
Chapter 33
Route Aggregation and Generation
33.1 Route Aggregation Overview

Route aggregation is a method of generating a more general summary route, given the pres-
ence of a more specific route. It is used, for example, at an autonomous system border to
generate a route to a network to be advertised via BGP, given the presence of one or more
subnets of that network learned via RIP. No aggregation is performed unless explicitly
requested in an aggregate statement.

Route aggregation is also used by regional and national networks to reduce the amount of
routing information passed. With careful allocation of network addresses to clients, regional
networks can announce one route to regional networks instead of hundreds.

Aggregate routes are not actually used for packet forwarding by the originator of the aggre-
gate route, only by the receiver (if it wishes). A router is supposed to respond with an ICMP
network unreachable message if the router receives a packet that does not match one of
the component routes that led to the generation of an aggregate route. This message is to
prevent packets for unknown component routes from following a default route into another
network, where they would be forwarded back to the border router, and around and around
again and again, until their TTL expired. Sending an unreachable message for a missing
piece of an aggregate is only possible on systems with support for reject routes.

A slight variation of aggregation is the generation of a route based on the existence of cer-
tain conditions. This is sometimes known as the “route of last resort.” This route inherits
the next hops and AS path from the contributor specified with the lowest (most favorable)
preference. The most common usage for this is to generate a default based on the presence
of a route from a peer on a neighboring backbone.

33.1.1 Aggregate and Generate Inheritance
The following parameters can be specified at multiple places within a given aggregate or
generate statement:

• restrict
• preference

In the case of restrict, placing it on an aggregate/generate source statement restricts
inclusion of all routes from the specified protocol in the aggregate. Including it on a
route_filter excludes all routes that match that route filter.

In the case of aggregation preference, the most specific instance of a preference value is
assigned to a route. Thus, any preference value specified on an aggregate/generate
statement is used only if neither the aggregate/generate source statement nor the
route_filter that matches a route specifies a value. The value of the most specific
9/26/02 155

Route Aggregation and Generation, GateD V.9.3.2
matching route_filter is used. If neither the aggregate/generate statement, the
matching aggregate/generate source statement, nor the matching route_filter speci-
fies a preference value, then the default aggregate preference value of 130 is used.

33.2 Aggregation and Generation Syntax
aggregate ([inet6] default |
 network (mask mask | masklen masklen | / masklen))

 [preference preference_value]

 [bgp]

 [brief]

 [[toribs] ([unicast | multicast | unicast multicast)]

 {

 aggregate_list

 };

generate ([inet6] default |
 network (mask mask | masklen masklen | / masklen))

 [preference preference_value]

 [[toribs] (unicast | multicast | unicast multicast)]

 [noinstall]

 {

 aggregate_list

 };

aggregate_list:

Aggregate lists are composed of one or more of the following:

 proto bgp

 [(as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))]

 [comm { communities_list }]

 [ext-comm { extended_communities_list }]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto bgp

 [(as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))]

 restrict ;

 proto rip

 [tag tagvalue]
156 9/26/02

Configuring GateD, V.9.3.2
 restrict ;

 proto rip

 [tag tagvalue]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ripng

 [tag tagvalue]

 restrict ;

 proto ripng

 [tag tagvalue]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ospf [tag tagvalue] restrict ;

 proto ospf [tag tagvalue] [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ospfase [tag tagvalue] restrict ;

 proto ospfase [tag tagvalue] [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto direct restrict ;

 proto direct

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto static restrict ;

 proto static

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto kernel restrict ;

 proto kernel

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto isis restrict ;
9/26/02 157

Route Aggregation and Generation, GateD V.9.3.2
 proto isis

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto aggregate restrict ;

 proto aggregate

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto all restrict ;

 proto all

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

More detailed descriptions of these commands can be found on page 667 of the Command
Reference Guide.

Routes that match the route filters are called “contributing” routes. They are ordered on
the list of contributing routes for a given aggregate route according to the aggregation
preference value that applies to them, with the lowest (best) preference values coming
first. The aggregation preference value can be specified on the aggregate or generate
statement, any aggregate source statement, or any route_filters. In addition to being
used to order contributing routes, the aggregation preference value associated with the
first contributor on this ordered list is used as the route preference value for the aggregate
route itself.

When ordering contributing routes on the contributor list, if two contributors have the
same aggregation preference value, then the contributor with the lowest route preference
is ordered before the other contributors with the same aggregation preference value.

In the case of generate, in addition to using the aggregation preference value of the first
contributor in the list as the aggregate route’s preference, the nexthops used for the
aggregate are taken to be those of the first contributor in the list.

The aspath for an aggregate is formed by combining the aspath of each contributor. If BGP
rules are configured for aggregation, the contributor order can impact the MED and
nexthop values in the combined aspath generated for the aggregate. This is due to the fact
that the values of MED and nexthop from the first valid BGP contributor route encountered
while traversing the contributor list in order are used in the combined aspath.

A route can contribute only to an aggregate route that is more general (less specific) than
itself; it must match the aggregate under its mask. Any given route can contribute only to
one aggregate route, which will be the most specific configured, but an aggregate route
may contribute to a more general aggregate.

Note that a route is only considered as a potential contributor to aggregate routes for
which it is a more specific route. Therefore, a filter of all only pertains to more specific
routes of the aggregate. Currently, specifying a network type filter for a network that is
158 9/26/02

Configuring GateD, V.9.3.2
not a more specific instance of the aggregate to which it pertains is not treated as an error
even though it will never match any contributors.

33.3 Exporting Generated vs. Aggregated Routes
If you create an aggregate and export it, the result achieved is that which is expected: for
the general aggregate, a loopback (reject) route is installed in the kernel, and the route is
advertised with the aggregating router as the next hop.

Consider the following topology

 --------- --------- ---------

 | RTR A | | RTR B | | RTR C |

 ----+---- ----+---- ----+----

 | | |

 --------+-----------------+---------------+------

wherein routers A and B are OSPF peers and routers B and C are BGP peers. Let router A
advertise a static route to 223.50. Let router B have the following configuration

aggregate 223 masklen 8 {

 proto ospfase {

 223 masklen 8 refines;

 };

}

export bgp peeras 123 {

 proto aggregate {

 all;

 };

};

Router B will install in its kernel

223.50 gw RTR A

223/8 gw 127.0.0.1 reject

and will advertise to Router C a route to 223/8 gw Router B. On the other hand, if the
same configuration is used but with generate instead of aggregate, so we have

generate 223 masklen 8 {

 proto ospfase {

 223 masklen 8 refines ;

 };

};
9/26/02 159

Route Aggregation and Generation, GateD V.9.3.2
then two things happen. Router B, instead of installing a reject route for portions of the
aggregate that do not have specific matches, will instead install the following routes in the
kernel:

223/8 gw RTR A

223.50 gw RTR A

The second difference is that the aggregate route advertised to router C will be 223/8 gw
router A.

You can also configure an aggregate 10/7 on behalf of another client AS (for example, AS
65003):

aggregate 10.0.0.0 masklen 7 {

 proto bgp as 65003{

 10.0.0.0 masklen 8;

 11.0.0.0 masklen 8;

 };

};

33.4 Aggregating into Unicast and Multicast RIBs
RIBs need not be specified for aggregate routes. By default, an aggregate applies to all
RIBs to which any contributing route applies. For example, an aggregate applies to the Uni-
cast RIB if and only if any contributing route applies to the Unicast RIB.

Examples

aggregate 10.0.0.0 masklen 8 {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

};

If any static route in the Unicast RIB matches the route filter, the aggregate will exist in
the Unicast RIB. Likewise, for the Multicast RIB.

RIB limits can, however, be specified. By default, the limit is all RIBs (i.e., all RIBs to which
any contributing route applies). This default can be overridden with a more specific limit,
as in the example below:

aggregate 10.0.0.0 masklen 8 unicast {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

};
160 9/26/02

Configuring GateD, V.9.3.2
The above aggregate applies only to the Unicast RIB (and only if a contributing route is in
the Unicast RIB). Contributing routes in other RIBs are ignored.
9/26/02 161

Route Aggregation and Generation, GateD V.9.3.2
162 9/26/02

	Chapter 33 Route Aggregation and Generation
	33.1 Route Aggregation Overview
	33.1.1 Aggregate and Generate Inheritance

	33.2 Aggregation and Generation Syntax
	33.3 Exporting Generated vs. Aggregated Routes
	33.4 Aggregating into Unicast and Multicast RIBs

