
Chapter 3
Customizing Your Build Configuration
3.1 Overview

This release of GateD uses GNU autoconf to detect platform-specific configuration options.
You do not need to install autoconf to build GateD. By default, GateD is compiled with all
protocols available in the license under which it was distributed.

This section documents how the build process may be configured to set the protocols and
features compiled in the GateD binary and change various compile-time parameters.

Several binaries may be produced by a compile of GateD, including standalone utilities such
as 'ripquery' and 'gdc'. These binaries will be present in a directory off of 'src' named the
same. The 'gated' binary is produced in src/gated.

Most build configuration is performed by passing command-line flags to the 'configure'
script. For a complete list of options, use:

./configure --help

3.2 Build Tools
The autoconf system provides some built-in flags for setting the tools to be used for compi-
lation. The GNU web site, www.gnu.org, is the most complete source of documentation for
these options. A few important ones are documented here.

3.2.1 C Compiler
The path to the C compiler to be used may be set with either the --with-cc flag or by set-
ting the $CC environment variable. For example, to build GateD using cc, use:

./configure --with-cc=cc

3.2.2 Parser Generator
GateD uses a yacc-based parser for parsing the configuration file. This requires a tool such
as yacc or bison to generate the C source code from a set of rules. The path to this tool may
be set by using the --with-yacc flag or by setting the $YACC environment variable. For
example, to use bison, use:

./configure --with-yacc=bison
9/26/02 5

Customizing Your Build Configuration, GateD V.9.3.2
3.2.3 Lex Scanner
GateD requires a lexer generator, which generates a lexer C source file from a set of rules.
To set the path to this tool, use the --with-lex flag or set the $LEX environment vari-
able. For example, to use flex, use:

./configure --with-lex=flex

3.2.4 Installation Paths
See the GNU autoconf manual for a complete list of options concerning the installation
paths. Compilation of GateD will typically result in several standalone binaries, which may
be installed in different locations. The GateD binary is installed in the 'sbin' directory spec-
ified by 'configure'.

3.3 Protocols
The 'configure' script may be used to configure a set of protocols to be built in this GateD
binary. Most protocol modules have --enable and --disable flags, which may be used to
enable or disable the protocol, respectively. The --disable-all flag is also useful
because it allows the user to disable all protocols and then enable a small subset. For
example, to build a GateD binary with only RIP, use:

./configure --disable-all --enable-rip

Dependencies are automatically resolved by 'configure'. Enabling the BGP module, for
example, also enables the ASPATHS module.

3.4 Standard Features
Some features of GateD can be enabled or disabled at compile time. This is in addition to
the protocols themselves; the features documented here are optionally enabled to support
some particular functionality or different mode of operation.

All of the features defined here can be enabled or disabled by passing flags to the 'config-
ure' script, which is run before building GateD.

3.5 Additional Features
In addition to this standard set of features, there are some other parameters that can be
manipulated to fine-tune the protocols' compile-time configuration. These parameters are
documented here. All parameters are disabled by default.

Feature: GII_DEBUG_MENU

Flag: --enable-developer

The GateD Interactive Interface (GII) contains some protocol debugging functions. For
example, one function allows a neighbor's Router-LSA to be sequence-wrapped and
reflooded. These functions are available in the 'debug' submenu when GII_DEBUG_MENU is
enabled.

In addition to enabling GII_DEBUG_MENU, the --enable-developer flag also turns on some
strict compiler warning flags when certain types of compilers are used (gcc is one of
them).
6 9/26/02

GateD V.9.3.2 Installation Guide
Feature: NOSPF_ALWAYS_CYCLE_MEMBERSHIP

Flag: --enable-ospf_dropfirst

Some versions of BSD exhibit a bug that prevents a multicast group from being dropped on
a logical interface when that interface has been deleted. This option forces GateD to
always drop and join when attempting to join a multicast group.

Feature: FEATURE_NOSPF_ALTQ_TE

Flag: --enable-ospf_altq_te

In the new_ospf protocol module there exists code to support learning bandwidth informa-
tion from the /dev/cbq device in a BSD kernel with ALTQ patches. This code requires that
the ALTQ header files exist in /usr/include/altq.

Feature: FEATURE_NOSPF_FAST_SPF

Flag: --enable-ospf_fast_spf

This feature expands the size of the vertex_t structure (the structure used to represent a
Link State Advertisement) in order to gain speed in the SPF. An extra pointer is added,
increasing the size by one machine word (typically 32 bits). The result is an approximate
twenty-five percent reduction of computation time required by the SPF. The pointer is
used to keep track of a candidate list entry for a vertex.

Feature: FEATURE_INTERFACE_AGING

Flag: --enable-interface_aging

Interface aging is a legacy behavior of GateD. In older code bases, unless the 'passive'
option was specified on an interface, an interface that did not receive routing protocol
traffic for a certain period of time was downed. This feature is now disabled unless explic-
itly requested here.
9/26/02 7

Customizing Your Build Configuration, GateD V.9.3.2
8 9/26/02

	Chapter 3 Customizing Your Build Configuration
	3.1 Overview
	3.2 Build Tools
	3.3 Protocols
	3.4 Standard Features
	3.5 Additional Features

