
Chapter 28
Route Exportation
export proto bgp

Name
export proto bgp - specifies the BGP peers that will receive routes

Syntax
 export proto bgp as autonomous_system restrict ;

 export proto bgp as autonomous_system

 [comm-add { communities_list }]

 [comm-delete { communities_list }]

 [ext-comm-add { extended_communities_list }]

 [ext-comm-del { extended_communities_list }]

 [metric metric] {

 export_source_statements

 } ;

Parameters
autonomous_system - autonomous system number from 1 to 65535

comm-add { communities_list } - communities to be added. See “Chapter 30 BGP Com-
munities” on page 133 in Configuring GateD for more information. By default no communi-
ties are added.

comm-delete { communities_list } - communities to be deleted. See “Chapter 30 BGP
Communities” on page 133” in Configuring GateD for more information. By default no com-
munities are deleted.

ext-comm-add { extended_communities_list } - extended communities to be added. See
“Chapter 30 BGP Communities” on page 133 in Configuring GateD for more information. By
default no extended communities are added.

ext-comm-del { extended_communities_list } - extended communities to be deleted.
See “Chapter 30 BGP Communities” on page 133” in Configuring GateD for more informa-
tion. By default no extended communities are deleted.

metric - BGP Multi-exit discriminator metric from 0 to 65535, by default the BGP
metricout value is used.
9/26/02 623

Route Exportation, GateD V.9.3.2
export_source_statements - zero or more source statements: proto bgp, proto rip,
proto ripng, proto ospf, proto ospfase, proto direct, proto static, proto
kernel, proto isis, or proto aggregate.

Description
The proto bgp export target statement specifies the neighboring AS to which routes will
be distributed for those routes that match the associated export_source_statements.
Additionally, the proto bgp command can be used to set community path attributes
through the comm-add, comm-delete, ext-comm-add, and ext-comm-del commands.

Like other export_target_statements, proto bgp allows one to set a metric on the
propagated routes. Of course, BGP does not have a metric in the sense that the link state
protocols do, instead using a complicated scheme for selecting a route. (Refer to “Route
Selection” on page 65 in Configuring GateD for more information.) Setting the metric with
proto bgp sets the MED used in steps 6 and 7 of this process. More detail on MEDs can be
found in “Multi-Exit Discriminator Overview and Examples” on page 79 in Configuring
GateD. From a scoping perspective, metric as set by this command is tighter scope than
that set in either the group or peer statement, and looser scope than that set in an
export_source_statement.

Defaults
BGP will, by default, export all default routes if there is no explicit export policy that
applies to this peer.

Context
global statement

Examples

Example 1

Configure GateD to export all EBGP routes to its IBGP peers, where myAS is my local AS
number.

 export proto bgp as myAS {

 proto bgp aspath “(.+)” origin any {

 all;

 };

 };

Example 2

The following example exports all routes learned via RIP and its external BGP peers to all
BGP peers in AS 65534, adds to the advertisement the well-known community
NO_EXPORT_SUBCONFED, and strips the arbitrary community 0x123 0x321.

 export proto bgp as 65534

 comm-add { community no-export-subconfed; }

 comm-delete { comm-hex 0x123 0x321; } {
624 9/26/02

Command Reference, GateD V.9.3.2
 proto rip {

 all;

 } ;

 proto bgp aspath “(.+)” origin any {

 all;

 };

 } ;

Example 3

The following example exports all OSPF routes to BGP peers in AS 65533.

 export proto bgp as 65533 {

 proto ospf {

 all;

 };

 };

Example 4

The following example exports into BGP, to all peers in AS 65533, all, and only, routes gen-
erated via an aggregate statement.

 export proto bgp as 65533 {

 proto aggregate {

 all;

 };

 };

Example 5

The following example exports into BGP, to all peers in AS 65533, all, and only, routes
learned with a leading AS of 65532.

 export proto bgp as 65533 {

 proto bgp aspath “(65532 .*)” origin any {

 all;

 };

 };

See Also
Application of the Border Gateway Protocol in the Internet (RFC 1164) at http://ietf.org/
rfc/rfc1164.txt

“AS Path Regular Expressions” on page 131 in Configuring GateD

“Chapter 31 Route Importation” on page 137 in Configuring GateD

comm-add on page 595
9/26/02 625

Route Exportation, GateD V.9.3.2
comm-delete on page 596

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

export proto ripng on page 638

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
626 9/26/02

Command Reference, GateD V.9.3.2
export proto isis

Name
export proto isis - specifies how to inject routes into IS-IS

Syntax
 export proto isis restrict ;

 export proto isis [metric-type type] [level level] [metric metric] {

 export_source_statements

 } ;

Parameters
type - either internal or external

level - the IS-IS level, either 1 or 2. (Defaults to 2.)

metric - an IS-IS metric from 1 to 63

export_source_statements - zero or more source statements: proto bgp, proto rip,
proto ospf, proto ospfase, proto direct, proto static, proto kernel, proto
isis, or proto aggregate.

Description
The proto isis export target specifies that routes matching the subsequent export
sources should be exported via the IS-IS protocol. Normally, only networks associated with
interfaces on which IS-IS is being run will be advertised. In order to override this behavior
(for example, to advertise directly connected networks on which IS-IS is not being run, or
to distribute routes learned from another protocol via IS-IS), a proto isis export target
statement must be used.

As with other export_target_statements, the arguments associated with proto isis
are specific to the IS-IS protocol, and a clear understanding of the protocol is important in
order to implement appropriate policy. For example, explaining the difference between
level 1 and level 2 routers is beyond the scope of this document.

The metric-type keyword is used to specify whether the metric for routes exported to IS-
IS via the export source statement associated with this export target are directly compara-
ble to normal IS-IS metrics. Note that the “wide” metric TLV does not support the marking
of external metrics. If this type of reachability is originated the metric will be “internal”
regardless of the setting here.

If the metric is to be considered comparable and used in the IS-IS SPF algorithm, then
internal should be specified. If the metrics are incompatible and should not be used,
then external should be specified. If no metric-type keyword is issued, then the behav-
ior will be that specified by the export-defaults metric-type statement.

It is worth noting that the IS-IS concept of internal and external metrics is not directly
analogous to the OSPF concept of type 1 and type 2 ASEs. Specifically, IS-IS has internal
and external reachability, rather than the concept of ASE. External reachability (and the
associated metric for routes which are externally reachable) is in behavior the same as if
9/26/02 627

Route Exportation, GateD V.9.3.2
an OSPF route were learned as a type 2 ASE route. However, internal reachability and the
associated metrics are directly related to IS-IS routes. (For example, they are not less pre-
ferred than IS-IS routes, whereas type 1 ASE routes in OSPF are less preferred than OSPF
routes.)

The level keyword is used to override the level specified by the export-defaults level
command. Because this is an overriding operation, if it is desired to export routes both to
level 1 and level 2 routers, two export commands will be required with differing proto
isis export targets and matching export sources.

Finally, the metric keyword is used to set the cost on routes matching the subsequent
export sources. The exact use of that metric depends on whether the routes are being
exported as internal or external. If they are being exported as external, then any metric
set is used as is, without adding any IS-IS link costs. This allows one, for example, to spec-
ify a certain ASBR for all traffic to matching destinations, regardless of its location within
the IS-IS mesh. For internal routes, the behavior is identical to what would happen if it
were an IS-IS route from the beginning.

Defaults
By default, nothing is exported into IS-IS.

Context
global statement

Examples

Example 1

The following example injects all BGP routes learned via peers in AS 65534 into IS-IS with
external reachability.

 export proto isis metric-type external {

 proto bgp as 65534 {

 all;

 };

 };

Example 2

In order to learn the best route to all static routes configured on IS-IS routers, the follow-
ing can be used.

 export proto isis metric-type internal {

 proto static {

 all;

 };

 };
628 9/26/02

Command Reference, GateD V.9.3.2
Example 3

The following example configures GateD to export the 1::/64 static route into ISIS IPv6
external reachability

 export proto isis metric-type external {

 proto static {

 1::/64;

 } ;

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export-defaults on page 171

export proto bgp on page 623

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

export proto ripng on page 638

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
9/26/02 629

Route Exportation, GateD V.9.3.2
export proto ospfase

Name
export proto ospfase - specifies how to inject routes into OSPF as ASE

Syntax
 export proto ospfase restrict ;

 export proto ospfase [type type] [tag tagvalue] [metric metric] {

 export_source_statements

 };

Parameters
type - the type of AS External route, 1 or 2

tagvalue - an arbitrary number from 0 to 4294967295

metric - OSPF ASE cost from 0 to 16777215

export_source_statements - zero or more source statements: proto bgp, proto rip,
proto ospfase, proto direct, proto static, proto kernel, proto isis, or proto
aggregate.

Description
The proto ospfase export target specifies that routes matching the subsequent export
sources should be exported through the OSPF protocol as AS external (ASE) routes. OSPF
uses four different types of routes: intra-area, inter-area, type 1 ASE, and type 2 ASE.
These four types of routes are listed in the order in which they are preferred, so if, for
example, a route to the same destination is learned both via type 1 ASE and type 2 ASE,
then the route learned via type 1 will always be used. Both types of ASE routes are routes
to destinations external to OSPF (and usually external to the AS). Routes exported into
OSPF ASE as type 1 ASE routes (via the type option) are supposed to be from interior gate-
way protocols (such as RIP) whose external metrics are directly comparable to OSPF met-
rics.

When a routing decision is being made, OSPF will add the internal cost to the AS border
router to the external metric. Type 2 ASEs are used for exterior gateway protocols whose
metrics are not comparable to OSPF metrics. In this case, only the metric associated with
the ASE route is used, and the internal OSPF cost to the ASBR is ignored (except for tie
breaking). If no type is specified, then the default is to use whatever was configured by the
type command.

The tag command sets an arbitrary number in the tag field for use in policy matching. This
tag has no meaning in the context of the OSPF protocol, but is instead used as a filter for
matching routes via the various export_source_statements.

Finally, the metric keyword is used to set the cost on routes matching the subsequent
export sources. The exact use of that metric depends on whether the routes are being
exported as type 1 or type 2 ASE. If they are being exported as type 2, then any metric set
is propagated unchanged throughout the OSPF network, allowing one, for example, to
specify that all ASE traffic go through a single ASBR, regardless of that ASBR’s location in
630 9/26/02

Command Reference, GateD V.9.3.2
the OSPF cloud. If no metric is specified, then the metric will be set according to the
inherit-metric command.

It is important to note that this only controls the distribution of routes as type 5 LSAs; for
distributing routes via type 7 LSAs, separate proto ospfnssa export targets must explic-
itly be configured. Type-5 LSAs (AS External LSAs) are distributed throughout type-5 capa-
ble areas in an OSPF domain. They represent destinations external to the AS. Type-7 LSAs
are distributed within Not So Stubby Areas (NSSAs) and may be translated or aggregated to
type-5 LSAs by the Area Border Routers (ABRs) bordering NSSA area(s).

Defaults
By default, nothing is exported into OSPF ASE.

Context
global statement

Examples

Example 1

The following example injects all BGP routes learned via peers in AS 65534 in to OSPF ASE
as type 2 routes. This is not recommended.

 export proto ospfase type 2 {

 proto bgp as 65534 {

 all;

 };

 };

Example 2

The following example ensures that all directly connected networks are distributed via
OSPF.

 export proto ospfase {

 proto direct {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfnssa on page 633

export proto rip on page 635
9/26/02 631

Route Exportation, GateD V.9.3.2
inherit-metric on page 109

“OSPF Overview” on page 45 in Configuring GateD

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

export proto ripng on page 638

proto static on page 669

type on page 150

stubnetworks on page 141
632 9/26/02

Command Reference, GateD V.9.3.2
export proto ospfnssa

Name
export proto ospfnssa - specifies how to inject ASE routes as type 7 LSAs

Syntax
 export proto ospfnssa restrict ;

 export proto ospfnssa [type type] [tag tagvalue] [metric metric] {

 export_source_statements

 };

Parameters
type - the type of AS External route, 1 or 2

tagvalue - an arbitrary number from 0 to 4294967295

metric - OSPF ASE cost from 0 to 16777215

export_source_statements - zero or more source statements: proto bgp, proto rip,
proto ospfase, proto direct, proto static, proto kernel, proto isis, or proto
aggregate.

Description
The proto ospfnssa export target specifies that routes matching the subsequent export
sources should be exported via type 7 LSAs in OSPF. In short, this means that the behavior
of this export target is identical to the behavior of the proto ospfase target, with the
exception that the routes matching subsequent export_source_statements will only be
advertised to areas that are configured to be “not so stubby.”

Defaults
By default, nothing is exported via type 7 LSAs.

Context
global statement

Examples
The following example injects all BGP routes learned via peers in AS 65534 into OSPF ASE
as type 2 routes, but only into those areas which are configured as NSSA.

 export proto ospfnssa type 2 {

 proto bgp as 65534 {

 all;

 };

 };
9/26/02 633

Route Exportation, GateD V.9.3.2
See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto rip on page 635

export proto ripng on page 638

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
634 9/26/02

Command Reference, GateD V.9.3.2
export proto rip

Name
export proto rip - specifies how to inject routes into RIP

Syntax
 export proto rip

 [interface interface_list | gateway gateway_list]

 restrict ;

 export proto rip

 [tag tagvalue]

 [interface interface_list | gateway gateway_list]

 [metric metric] {

 export_source_statements

 };

Parameters
interface_list - the list of interfaces over which routes from a subsequent export source
will be sent or all for all interfaces on which RIP is configured

gateway_list - the list of next hop RIP routers to which routes from a subsequent export
source will be sent

tagvalue - an arbitrary number from 0 to 65535

metric - RIP metric number from 1 to 15

export_source_statements - zero or more source statements: proto bgp, proto rip,
proto ospfase, proto direct, proto static, proto kernel, proto isis, or proto
aggregate.

Description
The proto rip export target specifies how routes are to be readvertised as RIP routes.
The interface and gateway parameters specify that the routes matched in subsequent
export_source_statements will only be advertised out the associated interface_list
or gateway_list. In the absence of the interface or gateway keywords, routes will be
sent out all interfaces on which RIP is configured.

Because RIP is a broadcast protocol (or multicast in the case of RIPv2), the effect of the
gateway keyword can be somewhat counter-intuitive. Specifically, the user would expect
RIP routes to only be advertised to the specific gateways mentioned in an instance of the
proto rip export target statement. This is in fact the case if those gateways are source
gateways. However, if source gateways are not used, then gateway effectively acts as a
wildcard for interface. By specifying gateways, the routes which pass the export source
filter associated with an export command will be either broadcast or multicast (as appro-
priate) to all RIP routers on the interfaces whose subnets include the specified gateways.
9/26/02 635

Route Exportation, GateD V.9.3.2
It is important to note that the gateway_list must only include gateways on directly con-
nected interfaces; otherwise a parse error will occur. If the interface upon which a speci-
fied gateway is directly reachable may not be functional at the time GateD configuration
takes place, then the interfaces define statement should be used to predefine the
interface.

Finally, the metric keyword is used to set the RIP metric on routes matching the subse-
quent export sources. This keyword is used to override the RIP metric set with the rip
defaultmetric command.

Defaults
 export proto rip {

 proto direct {

 all;

 };

 };

Context
global statement

Examples

Example 1

The following example exports all, and only, routes specified in the static clause of the
GateD configuration file via RIP.

 export proto rip {

 proto static {

 all;

 };

 };

Example 2

The following example advertises all static, direct, and RIP routes, via RIP, out the inter-
face 192.168.2.10.

 export proto rip interface 192.168.2.10 {

 proto static {

 all;

 };

 proto direct {

 all;

 };

 proto rip {
636 9/26/02

Command Reference, GateD V.9.3.2
 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

defaultmetric on page 55

define on page 22

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

export proto ripng on page 638

proto static on page 669

sourcegateways on page 76

version on page 83
9/26/02 637

Route Exportation, GateD V.9.3.2
export proto ripng

Name
export proto ripng - specifies how to inject routes into RIPng

Syntax
 export proto ripng

 [interface interface_list | gateway gateway_list]

 restrict ;

 export proto ripng

 [tag tagvalue]

 [interface interface_list | gateway gateway_list]

 [metric metric] {

 export_source_statements

 };

Parameters
interface_list - the list of interfaces over which routes from a subsequent export source
will be sent or all for all interfaces on which RIPng is configured

gateway_list - the list of next hop RIPng routers to which routes from a subsequent
export source will be sent

tagvalue - an arbitrary number from 0 to 65535

metric - RIPng metric number from 1 to 15

export_source_statements - zero or more source statements: proto bgp, proto
direct, proto static, proto kernel, proto isis, or proto aggregate.

Description
The proto ripng export target specifies how IPv6 routes are to be readvertised as RIPng
routes. The interface and gateway parameters specify that the routes matched in subse-
quent export_source_statements will only be advertised out the associated
interface_list or gateway_list. In the absence of the interface or gateway key-
words, routes will be sent out all interfaces on which RIPng is configured.

Because RIPng uses multicast, the effect of the gateway keyword can be somewhat
counter-intuitive. Specifically, the user would expect RIPng routes to only be advertised to
the specific gateways mentioned in an instance of the proto ripng export target state-
ment. This is in fact the case if those gateways are source gateways. However, if source
gateways are not used, then gateway effectively acts as a wildcard for interface. By
specifying gateways, the routes which pass the export source filter associated with an
export command will be either broadcast or multicast (as appropriate) to all RIPng routers
on the interfaces whose subnets include the specified gateways.

It is important to note that the gateway_list must only include gateways on directly con-
nected interfaces; otherwise a parse error will occur. If the interface upon which a speci-
638 9/26/02

Command Reference, GateD V.9.3.2
fied gateway is directly reachable may not be functional at the time GateD configuration
takes place, then the interfaces define statement should be used to predefine the
interface.

Finally, the metric keyword is used to set the RIPng metric on routes matching the subse-
quent export sources. This keyword is used to override the RIPng metric set with the ripng
defaultmetric command.

Defaults
 export proto ripng {

 proto direct {

 all;

 };

 };

Context
global statement

Examples

Example 1

The following example exports all, and only, IPv6 routes specified in the static clause of
the GateD configuration file via RIPng.

 export proto ripng {

 proto static {

 all;

 };

 };

Example 2

The following example advertises all static, direct, and RIPng IPv6 routes, via RIPng, out
the interface fec0::01.

 export proto ripng interface fec0::01 {

 proto static {

 all;

 };

 proto direct {

 all;

 };

 };
9/26/02 639

Route Exportation, GateD V.9.3.2
See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

defaultmetric on page 557

define on page 22

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669

sourcegateways on page 76

version on page 83
640 9/26/02

Command Reference, GateD V.9.3.2
fromribs

Name
fromribs - specifies the RIBs from which a route will be exported

Syntax
 route_filter fromribs riblist ;

Parameters
route_filter - a set of route filters specifying routes to match. These filters specify
whether a route is to be accepted, and if so, with what attributes. See “Chapter 28 Route
Filtering” on page 129 of Configuring GateD for more information.

riblist - one of the following:

unicast - specifies that the routes in the unicast RIB are to be exported

multicast - specifies that the routes in the multicast RIB are to be exported

unicast multicast - specifies that the routes in both the unicast and multicast RIBs are
to be exported

Description
fromribs is used to indicate the RIBs from which a route will be exported. It is currently
only applicable to route_filters within a BGP export target because only BGP can export
routes from either the unicast or multicast RIBs. It should be used only on route_filters
associated with the bgp, direct, or static export source statements, as only these proto-
cols can import routes in the multicast RIB.

If just one of the unicast or multicast RIBs is specified for fromribs and a route to be
exported is in both RIBs, the route will be exported to just the specified fromribs.

Defaults
If fromribs is not specified, routes from either RIB are accepted and exported according
to toribs. By default, BGP exports routes in either the unicast or multicast RIBs. All other
export protocols export only routes in the unicast RIB.

Context
route_filter

Examples
 export proto bgp as 65534 {

 all fromribs multicast ;

 } ;

 This example exports only multicast routes learned from this AS.
9/26/02 641

Route Exportation, GateD V.9.3.2
See Also
“Chapter 32 Route Exportation” on page 145 in Configuring GateD

proto bgp on page 646

proto direct on page 649

proto static on page 669
642 9/26/02

Command Reference, GateD V.9.3.2
proto aggregate

Name
proto aggregate - filters on routes which are aggregates of other routes

Syntax
 proto aggregate restrict ;

 proto aggregate [noagg] [metric metric]

 { [route_filter [restrict | (metric metric)] ;] } ;

Parameters
metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that it
must not be contributing to an aggregate in order for it to be passed on to the export tar-
get

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto aggregate export source statement is used to match routes which have been
aggregated from other routes for exportation via one of the export target statements,
described in this chapter.

In the restrict version of this export_source_statement, any aggregated routes are
prohibited from redistribution in the associated export_target_statement.

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target. Upon first inspection, this may seem like a non-sequitur as
we are matching aggregate routes, but in fact it is not. Keep in mind that an aggregated
route is distinct from one which contributes to an aggregate, and also that it is possible to
aggregate from other, previously aggregated routes.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export_target_statement. Setting a metric value in
an export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters will be passed
on to the export target within which this proto aggregate is included.

Any number of unique proto aggregate export sources can be used within the context of
a single export target statement.
9/26/02 643

Route Exportation, GateD V.9.3.2
Defaults
By default, no proto aggregate export source exists.

Context
export source statement

Examples

Example 1

The following example exports into OSPF as ASE all routes which are aggregates of other
routes.

 export proto ospfase {

 proto aggregate {

 all;

 };

 };

Example 2

The following example exports into RIP all routes which are aggregates of other routes,
provided that they themselves are not contributing to a greater aggregate.

 export proto rip {

 proto aggregate noagg {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660
644 9/26/02

Command Reference, GateD V.9.3.2
proto rip on page 663

proto static on page 669
9/26/02 645

Route Exportation, GateD V.9.3.2
proto bgp

Name
proto bgp - filters on routes learned via BGP

Syntax
 proto bgp (as autonomous_system) | (aspath aspath_regular_expression

 origin (any | igp | egp | incomplete))

 [comm communities_list]

 [ext-comm extended_communities_list]

 restrict;

 proto bgp (as autonomous_system) | (aspath aspath_regular_expression

 origin (any | igp | egp | incomplete))

 [comm communities_list]

 [ext-comm extended_communities_list]

 [noagg] [metric metric]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

Parameters
autonomous_system - autonomous system number from 1 to 65535

aspath_regular_expression - The syntax of these regular expressions is described in “AS
Path Regular Expressions” on page 131, and in section 4.2 of RFC 1164.

comm { communities_list } - specifies that this import statement applies to routes
learned with the communities specified in communities_list

ext-comm { extended_communities_list } - specifies that this import statement
applies to routes learned with the extended communities specified in
extended_communities_list

metric - a metric with a range appropriate to the protocol as described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

fromribs riblist - specifies the RIBs from which routes matching this route_filter will
be exported. See “fromribs” on page 641 for more information.
646 9/26/02

Command Reference, GateD V.9.3.2
Description
The proto bgp export source statement is used to match routes learned via the BGP pro-
tocol for exportation via one of the export target statements, described in this chapter.

The statement includes either an as or aspath component, an optional community match-
ing component, an optional extended community component, and an optional noagg com-
ponent. If any route_filters are provided, then any routes matching those filters which
also match the as portion and the optional community portions will be passed onto the
export target for which this proto bgp is an export source. The noagg matching filter is
used to specify that any route matching the other filters has the additional caveat that it
must not be contributing to an aggregate in order for it to be passed on to the export tar-
get.

Any number of proto bgp export sources can be used within the context of a given export
target, so long as they are not repeated.

As with all export source statements, the optional metric must be a valid metric for the
associated protocol in the export target statement. Setting a metric value in an export
source overrides any metric set on the export target, thus allowing for additional scope.

If any route_filters are provided, then any routes matching these filters that also match
the proto bgp statement parameters will be passed on to the export target within which
this proto bgp statement is included.

Defaults
By default there are no proto bgp export source statements.

Context
export source statement

Examples

Example 1

The following example exports into BGP, to all peers in AS 65533, all, and only, routes
learned with a leading AS of 65532.

 export proto bgp as 65533 {

 proto bgp aspath “(65532 .*)” origin any {

 all;

 };

 };

Example 2

The following example injects all BGP routes learned via peers in AS 65534 in to OSPF ASE
as type 2 routes. This is not recommended.

 export proto ospfase type 2 {

 proto bgp as 65534 {

 all;
9/26/02 647

Route Exportation, GateD V.9.3.2
 };

 };

Example 3

The following example exports into BGP, to all peers in AS 65533, all, and only, routes
learned with a leading AS of 65532.

 export proto bgp as 65533 {

 proto bgp aspath “(65532 .*)” origin any {

 all;

 };

 };

See Also
Application of the Border Gateway Protocol in the Internet (RFC 1164) at http://ietf.org/
rfc/rfc1164.txt

“AS Path Regular Expressions” on page 131 in Configuring GateD

“Chapter 31 Route Importation” on page 137 in Configuring GateD

comm on page 593

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

fromribs on page 641

proto aggregate on page 643

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
648 9/26/02

Command Reference, GateD V.9.3.2
proto direct

Name
proto direct - filter on directly connected interfaces

Syntax
 proto direct [(interface interface_list)] restrict ;

 proto direct [(interface interface_list)]

 [noagg] [metric metric]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

Parameters
interface_list - the list of interfaces on which the matching route must be present in
order for it to be exported to the associated export target

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

fromribs riblist - specifies the RIBs from which routes matching this route_filter will
be exported. See “fromribs” on page 641 for more information.

Description
The proto direct export source statement is used to match routes associated with
directly connected interfaces for exportation via one of the export target statements,
described in this chapter.

If the optional interface parameter is used, only routes associated with those interfaces
matching the interface_list will be tested against the remaining filters and policy.

In the restrict version of this export source statement, any direct routes which match
the optional interface parameter (or all direct routes in the absence of said parameter)
will not be exported via the associated export_target_statement.

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target. Refer to “Chapter 33 Route Aggregation and Generation”
on page 155 in Configuring GateD for more information.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export_target_statement. Setting a metric value in
9/26/02 649

Route Exportation, GateD V.9.3.2
an export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters that also match
the optional interface specification will be passed on to the export target within which this
proto direct is included.

Any number of unique proto direct export sources can be used within the context of a
single export target statement.

Defaults
By default, no proto direct export source exists (except as described in the export com-
mand).

Context
export source statement

Examples

Example 1

The following example exports into RIP all directly connected routes.

 export proto rip {

 proto direct {

 all;

 };

 };

Example 2

The following example exports into RIP all directly connected routes, except those on the
interface eth0.

 export proto rip {

 proto direct interface eth0 restrict;

 proto direct {

 all;

 };

 };

Example 3

The following example exports into RIP all directly connected routes, but routes from
interface eth0 are exported with a higher metric. Note: The default rip metric is 1.

 export proto rip {

 proto direct eth0 metric 2 {

 all;
650 9/26/02

Command Reference, GateD V.9.3.2
 };

 proto direct {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643

proto bgp on page 646

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
9/26/02 651

Route Exportation, GateD V.9.3.2
proto isis

Name
proto isis - filters on routes learned via IS-IS

Syntax
 proto isis [internal | external] restrict ;

 proto isis [internal | external]

 [noagg] [metric metric]

 { [route_filter [restrict | (metric metric)] ;] } ;

Parameters
metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

internal - explicitly propagates only those routes which have internal reachability

external - explicitly propagates only those routes which have external reachability

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto isis export source statement is used to match routes that have been propa-
gated through IS-IS for exportation via one of the export target statements, described in
this chapter.

The internal and external keywords are used to explicitly propagate only those routes
which have internal or external reachability, respectively. In the absence of either key-
word, the proto isis export source statement defaults to only matching IS-IS routes that
have been received with internal reachability. As a result, in order to propagate all IS-IS
routes, a separate export source must be created for both internal and external reachabil-
ity.

In the restrict version of this export_source_statement, no IS-IS routes of the appro-
priate reachability will be exported via the associated export_target_statement.
Strictly speaking, using the restrict version of this statement has no effect, as it would
be the same behavior as if the statement had not been specified. (In other words, no IS-IS
routes other than those matching any unrestricted version of the statement would be
exported to the associated target.)

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target.
652 9/26/02

Command Reference, GateD V.9.3.2
As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export target statement. Setting a metric value in an
export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters that also match
the proto isis statement parameters will be passed on to the export target for which
this proto isis is an export source.

Any number of unique proto isis export sources can be used within the context of a sin-
gle export target statement.

Defaults
By default, no proto isis export source exists.

Context
export source statement

Examples

Example 1

The following example exports into OSPF as Type 1 ASE all IS-IS routes with internal reach-
ability.

 export proto ospfase type 1 {

 proto isis {

 all;

 };

 };

Example 2

The following example exports into RIP all IS-IS routes.

 export proto rip {

 proto isis internal {

 all;

 };

 proto isis external {

 all;

 };

 };

Example 3

The following example exports into OSPF as ASE type 2 routes, all IS-IS routes with external
reachability.

 export proto ospfase type 2 {
9/26/02 653

Route Exportation, GateD V.9.3.2
 proto isis external {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

“OSPF Overview” on page 45 in Configuring GateD

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
654 9/26/02

Command Reference, GateD V.9.3.2
proto kernel

Name
proto kernel - filters on routes that are learned from the FIB

Syntax
 proto kernel [interface interface_list] restrict ;

 proto kernel [interface interface_list] [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;

Parameters
interface_list - the list of interfaces on which the next hop for the matching route must
reside in order for the matching route to be exported to the associated export target

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto kernel export source statement is nearly identical to the proto static
export source statement. The only difference is that, rather than referring to routes stati-
cally configured by the routing daemon, this refers to routes which are learned from the
FIB. Of course, it is not normally expected that routes will be learned from the FIB; how-
ever, there are two cases where this is possible. First, the routes could be remnant routes
learned via the route socket after a software crash. In this case, it is strongly advised that
the routes not be readvertised. Second, another administrative authority has directly
added routes to the FIB. This is most commonly the case when GateD is used as a routing
daemon on a UNIX workstation (in which case the FIB is the kernel RIB) and the super user
adds routes via the route command. Because this is the only case where redistributing ker-
nel routes is even remotely advisable, and the case is an historic one, the proto kernel
export source should probably never be used.

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target.

Defaults
By default, no proto kernel export source exists.
9/26/02 655

Route Exportation, GateD V.9.3.2
Context
export source statement

Examples
The following example exports into OSPF as ASE all routes which are learned from the FIB.

 export proto ospfase {

 proto kernel {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663

proto static on page 669
656 9/26/02

Command Reference, GateD V.9.3.2
proto ospf

Name
proto ospf - filter on routes learned via OSPF

Syntax
 proto ospf [type type] [tag tagvalue] restrict ;

 proto ospf [type type] [tag tagvalue] [metric metric] [noagg]

 { route_filter [restrict | (metric metric)] ;

 } ;

Parameters
type - the type of AS External route, 1 or 2

tagvalue - an arbitrary number from 0 to 4294967295

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto ospf export source statement is used to match OSPF routes for exportation via
one of the export target statements, described in this chapter. It only deals with routes
learned directly from OSPF and does not consider routes that are AS external to OSPF. For
these routes, see the proto ospfase export source statement.

In the restrict version of this export_source_statement, no OSPF routes that match
the optional tagvalue (or no OSPF routes at all in the absence of the tagvalue parame-
ter) will be exported via the associated export_target_statement. Strictly speaking,
using the restrict version of this statement without the tagvalue parameter has no
effect, as it would be the same behavior as if the statement had not been specified (that
is, no OSPF routes other than those matching the unrestricted version of the statement
would be exported to the associated target).

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export target statement. Setting a metric value in an
export source overrides any metric set on the export target, thus allowing for additional
scope.
9/26/02 657

Route Exportation, GateD V.9.3.2
If any route_filters are provided, then any routes matching these filters which also
match the proto ospf statement will be passed on to the export target for which this
proto ospf is an export source.

Any number of unique proto ospf export sources can be used within the context of a sin-
gle export target statement.

Defaults
By default, no proto ospf export source exists.

Context
export source statement

Examples

Example 1

The following example exports into RIP all OSPF routes.

 export proto rip {

 proto ospf {

 all;

 };

 };

Example 2

The following example exports into RIP all OSPF routes, except those received with a tag
of 12345.

 export proto rip {

 proto ospf {

 all;

 };

 proto ospf tag 12345 restrict;

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643
658 9/26/02

Command Reference, GateD V.9.3.2
proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospfase on page 660

proto rip on page 663

proto static on page 669
9/26/02 659

Route Exportation, GateD V.9.3.2
proto ospfase

Name
proto ospfase - filters on routes learned via OSPF that are AS External

Syntax
 proto ospfase [type type] [tag tag] restrict ;

 proto ospfase [type type] [tag tag] [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;

Parameters
type - the type of AS External route, 1 or 2

tagvalue - an arbitrary number from 0 to 4294967295

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto ospfase export source statement is used to match routes that have been prop-
agated through OSPF as ASE for exportation via one of the export target statements,
described in this chapter. To export routes learned as OSPF routes, see proto ospf.

In the restrict version of this export_source_statement, no OSPF ASE routes that
match the optional tagvalue (or no OSPF routes at all in the absence of the tagvalue
parameter) and are of the optional type will be exported via the associated
export_target_statement. In the absence of the type parameter, this export source
applies to both type 1 and type 2 ASE routes. For more information on the difference
between type 1 and type 2 ASE routes, refer to “OSPF Overview” on page 45 in Configuring
GateD. Strictly speaking, using the restrict version of this statement with neither the
tag nor the type parameter has no effect, as it would be the same behavior as if the state-
ment had not been specified. (In other words, no OSPF ASE routes other than those match-
ing any unrestricted version of the statement would be exported to the associated target.)

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export target statement. Setting a metric value in an
660 9/26/02

Command Reference, GateD V.9.3.2
export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters which also
match the proto ospfase statement parameters will be passed on to the export target
within which this proto ospfase is included.

Any number of unique proto ospfase export sources can be used within the context of a
single export target statement.

Defaults
By default, no proto ospfase export source exists.

Context
export source statement

Examples

Example 1

The following example exports into RIP all OSPF ASE routes.

 export proto rip {

 proto ospfase {

 all;

 };

 };

Example 2

The following example exports into RIP all OSPF ASE routes, except those received with a
tag of 12345.

 export proto rip {

 proto ospfase {

 all;

 };

 proto ospfase tag 12345 restrict;

 };

Example 3

The following example exports into RIP all OSPF ASE routes, but type 1 routes are exported
with a higher RIP metric.

 export proto rip {

 proto ospfase type 2 {

 all;

 };
9/26/02 661

Route Exportation, GateD V.9.3.2
 proto ospfase type 1 metric 2 {

 all;

 };

 };

Example 4

In this example, type 2 OSPF ASE routes that have a tag of 65535 are exported to AS 65535
via BGP, provided that they are not contributing to an aggregate.

 export proto bgp as 65535 {

 proto ospfase type 2 tag 65535 noagg {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto rip on page 663

proto static on page 669
662 9/26/02

Command Reference, GateD V.9.3.2
proto rip

Name
proto rip - filter on routes learned via RIP

Syntax
 proto rip

 [tag tagvalue | interface interface_list | gateway gateway_list]

 restrict ;

 proto rip

 [interface interface_list | gateway gateway_list | tag tagvalue]

 [metric metric] [noagg]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

Parameters
interface_list - the list of interfaces over which the matching route must have been
received in order for it to be exported to the associated export target

gateway_list - the list of next hop RIP routers from which routes must have been learned
in order for them to be exported via the associated export target

tagvalue - an arbitrary number from 0 to 65535

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto rip export source statement is used to match RIP routes for exportation via
one of the export target statements, described in this chapter.

If the optional interface parameter is used, only routes learned over those interfaces
matching the interface_list will be tested against the remaining filters and policy. Sim-
ilarly, if the optional gateway parameter is used, then only those routes learned from rout-
ers matching the gateway_list will be considered for exportation.

In the restrict version of this export_source_statement, any RIP routes which match
the optional tag, interface, or gateway parameters (or all RIP routes in the absence of
said parameters) will be excluded from exportation via the associated
export_target_statement.
9/26/02 663

Route Exportation, GateD V.9.3.2
The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target. Similarly, the tag matching filter is used to specify that any
route matching the other filters must also have this administratively set tagvalue.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export target statement. Setting a metric value in an
export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters which also
match the proto rip statement parameters will be passed on to the export target within
which this proto rip is included. Note, however, that this export source cannot be used in
conjunction with the proto rip export target statement. (Technically, exporting from RIP
into RIP can be specified, but it has no effect, regardless of additional parameters.)

Any number of unique proto rip export sources can be used within the context of a single
export target statement.

Defaults
By default, no proto rip export source exists.

Context
export source statement

Examples

Example 1

The following example exports into OSPF as ASE all RIP routes.

 export proto ospfase {

 proto rip {

 all;

 };

 };

Example 2

The following example exports into OSPF as ASE all RIP routes, except that those tagged
with 12345 are exported with a higher cost.

 export proto ospfase {

 proto rip tag 12345 metric 5000 {

 all;

 };

 proto rip {

 all;

 };
664 9/26/02

Command Reference, GateD V.9.3.2
 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto static on page 669
9/26/02 665

Route Exportation, GateD V.9.3.2
proto ripng

Name
proto ripng - filter on routes learned via RIPng

Syntax
 proto ripng

 [tag tagvalue | interface interface_list | gateway gateway_list]

 restrict ;

 proto ripng

 [interface interface_list | gateway gateway_list | tag tagvalue]

 [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;

Parameters
interface_list - the list of interfaces over which the matching route must have been
received in order for it to be exported to the associated export target

gateway_list - the list of next hop RIPng routers from which routes must have been
learned in order for them to be exported via the associated export target

tagvalue - an arbitrary number from 0 to 65535

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

Description
The proto ripng export source statement is used to match RIPng IPv6 routes for expor-
tation via one of the export target statements, described in this chapter.

If the optional interface parameter is used, only routes learned over those interfaces
matching the interface_list will be tested against the remaining filters and policy. Sim-
ilarly, if the optional gateway parameter is used, then only those routes learned from rout-
ers matching the gateway_list will be considered for exportation.

In the restrict version of this export_source_statement, any RIPng routes which match
the optional tag, interface, or gateway parameters (or all RIPng routes in the absence of
said parameters) will be excluded from exportation via the associated
export_target_statement.
666 9/26/02

Command Reference, GateD V.9.3.2
The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target. Similarly, the tag matching filter is used to specify that any
route matching the other filters must also have this administratively set tagvalue.

As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export target statement. Setting a metric value in an
export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters which also
match the proto ripng statement parameters will be passed on to the export target
within which this proto ripng is included. Note, however, that this export source cannot
be used in conjunction with the proto ripng export target statement. (Technically,
exporting from RIPng into RIPng can be specified, but it has no effect, regardless of addi-
tional parameters.)

Any number of unique proto ripng export sources can be used within the context of a sin-
gle export target statement.

Defaults
By default, no proto ripng export source exists.

Context
export source statement

Examples

Example 1

The following example exports all RIPng routes to BGP peers in AS 201.

 export proto bgp as 201 {

 proto ripng {

 all;

 };

 };

Example 2

The following example exports into IS-IS external reachability all RIPng routes, except that
those tagged with 12345 are exported with a higher cost.

 export proto isis level 2 {

 proto ripng tag 12345 metric 5000 {

 all;

 };

 proto ripng {

 all;
9/26/02 667

Route Exportation, GateD V.9.3.2
 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630

export proto ospfnssa on page 633

export proto rip on page 635

proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto static on page 669
668 9/26/02

Command Reference, GateD V.9.3.2
proto static

Name
proto static - filter on statically configured routes

Syntax
 proto static [interface interface_list] restrict ;

 proto static [interface interface_list]

 [metric metric] [noagg]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

Parameters
interface_list - the list of interfaces on which the next hop for the matching route must
reside in order for the matching route to be exported to the associated export target

metric - a metric with range appropriate to the protocol described in the associated
export target

route_filter - route filter as described in the route filter document. See “Chapter 28
Route Filtering” on page 129 for more information.

noagg - specifies that any route matching the other filters has the additional caveat that
it must not be contributing to an aggregate in order for it to be passed on to the export
target

restrict - can be specified on the proto statement or any of its route_filters. It indi-
cates that any matching routes are not to be exported.

fromribs riblist - specifies the RIBs from which routes matching this route_filter will
be exported. See “fromribs” on page 641 for more information.

Description
The proto static export source statement is used to match routes which have been stat-
ically configured for exportation via one of the export target statements, described in this
chapter.

If the optional interface parameter is used, only routes associated with those interfaces
matching the interface_list will be tested against the remaining filters and policy. Since
static routes are not learned, per se, the match against interface may seem slightly differ-
ent than that of other export_source_statements (though it technically is not). The
static routes must have next hops that reside on a matched, directly connected interface
in order for them to match this filter.

In the restrict version of this export_source_statement, any static routes that match
the optional interface parameter (or all static routes in the absence of said parameter) will
not be exported via the associated export_target_statement.

The noagg matching filter is used to specify that any route matching the other filters has
the additional caveat that it must not be contributing to an aggregate in order for it to be
passed on to the export target.
9/26/02 669

Route Exportation, GateD V.9.3.2
As with all export source statements, the optional metric parameter must be a valid met-
ric for the associated protocol in the export_target_statement. Setting a metric value in
an export source overrides any metric set on the export target, thus allowing for additional
scope.

If any route_filters are provided, then any routes matching these filters which also
match the proto static statement parameters will be passed on to the export target
within which this proto static is included.

Any number of unique proto static export sources can be used within the context of a
single export target statement.

Defaults
By default, no proto static export source exists.

Context
export source statement

Examples

Example 1

The following example exports into OSPF as ASE all static routes configured on this router.

 export proto ospfase {

 proto static {

 all;

 };

 };

Example 2

The following example exports into RIP all statically configured routes, except those with
next hops on the interface eth0.

 export proto rip {

 proto static interface eth0 restrict;

 proto static {

 all;

 };

 };

See Also
“Chapter 31 Route Importation” on page 137 in Configuring GateD

export proto bgp on page 623

export proto isis on page 627

export proto ospfase on page 630
670 9/26/02

Command Reference, GateD V.9.3.2
export proto ospfnssa on page 633

export proto rip on page 635

fromribs on page 641proto aggregate on page 643

proto bgp on page 646

proto direct on page 649

proto isis on page 652

proto kernel on page 655

proto ospf on page 657

proto ospfase on page 660

proto rip on page 663
9/26/02 671

Route Exportation, GateD V.9.3.2
672 9/26/02

	Chapter 28 Route Exportation
	export proto bgp
	export proto isis
	export proto ospfase
	export proto ospfnssa
	export proto rip
	export proto ripng
	fromribs
	proto aggregate
	proto bgp
	proto direct
	proto isis
	proto kernel
	proto ospf
	proto ospfase
	proto rip
	proto ripng
	proto static

