
Chapter 18
Kernel Interface
18.1 Kernel Interface Overview

Although the kernel interface is not technically a routing protocol, it has many characteris-
tics of one, and GateD handles it similarly. The routes GateD chooses to install in the kernel
forwarding table are those that will actually be used by the kernel to forward packets.

The add, delete, and change operations that GateD must use to update the typical kernel
forwarding table take a non-trivial amount of time. The time used does not present a prob-
lem for older routing protocols (such as RIP), which are not particularly time critical and do
not easily handle large numbers of routes anyway. The newer routing protocols (such as
OSPF and BGP) have stricter timing requirements and are often used to process many more
routes. The speed of the kernel interface becomes critical when these protocols are used.

To prevent GateD from locking up for significant periods of time while installing large num-
bers of routes (up to a minute or more has been observed on real networks), the processing
of these routes is done in batches. The size of these batches can be controlled by the tuning
parameters shown below, but normally the default parameters will provide the proper func-
tionality.

During normal shutdown processing, GateD deletes all the routes it has installed in the ker-
nel forwarding table, except for those static routes marked with retain. Optionally, GateD
can leave all routes in the kernel forwarding table by not deleting any routes using noflus-
hatexit. This option is useful on systems with large numbers of routes because it elimi-
nates the need to re-install the routes when GateD restarts, which can greatly reduce the
time it takes to recover from a restart.

18.2 Kernel Interface Syntax
 kernel {

 [options

 [nochange]

 [noflushatexit]

 ;]

 [remnantholdtime time ;]

 [routes number ;]

 [flash

 [limit number]

 [type (interface | interior | all)]
9/26/02 95

Kernel Interface, GateD V.9.3.2
 ;]

 [background

 [limit number]

 [priority (flash | higher | lower)]

 ;]

 [traceoptions
 [tracefile [replace]
 [size tracesize [k | m] files tracefiles]] [nostamp]
 [trace_global_options | trace_protocol_options |
 trace_protocol_packets]
 [except (trace_global_options | trace_protocol_options |
 trace_protocol_packets)]
 ;]

 } ;

More detailed descriptions of these commands can be found on page 321 of the Command
Reference Guide.

18.3 Forwarding Tables and Routing Tables
The rest of this section assumes that the reader understands how GateD interacts with a
UNIX system.

The forwarding table, also known as the forwarding information base (FIB), is the table
that controls the forwarding of packets in the kernel. The routing table, also known as the
routing information base (RIB), is the table that GateD uses internally to store routing
information that it learns from routing protocols. The routing table is used to collect and
store routes from various protocols. For each unique combination of network and mask, an
active route is chosen. This route will be the one with the best (numerically smallest) pref-
erence. All the active routes are installed in the kernel forwarding table. The entries in
this table are what the kernel actually uses to forward packets.

18.3.1 Updating the Forwarding Table
Two main methods of updating the kernel FIB are the ioctl() interface and the routing
socket interface.

18.3.1.1 The ioctl() Interface
The ioctl() interface to the forwarding table was introduced in BSD 4.3 and widely dis-
tributed in BSD 4.3. It has several limitations, including:

• fixed subnet masks
• a one-way interface
• blind updates
• the inability to support changes

Fixed Subnet Masks

The ioctl() interface allows only fixed subnet masks. The BSD 4.3 networking code
assumed that all subnets of a given network had the same subnet mask. This limitation is
96 9/26/02

Configuring GateD, V.9.3.2
enforced by the kernel. The network mask is not stored in the kernel forwarding table, but
determined when a packet is forwarded by searching for interfaces on the same network.

One-way Interface

Because of the one-way interface, GateD is able to update the kernel forwarding table, but
it is not aware of other modifications of the forwarding table. GateD is able to listen to
ICMP messages and guess how the kernel has updated the forwarding table in response to
ICMP redirects.

Blind Updates

Because of blind updates, GateD is not able to detect changes to the forwarding table
resulting from the use of the route command by the system administrator. Use of the route
command on systems that use the ioctl()interface is strongly discouraged while GateD is
running.

No Change

Because no change operation is supported, a route must be deleted and a new one added
to change a route that exists in the kernel.

18.3.1.2 The Routing Socket Interface
The routing socket interface to the kernel forwarding table was introduced in BSD 4.3 Reno,
widely distributed in BSD 4.3 Net/2, and improved in BSD 4.4. This interface is simply a
socket, similar to a UDP socket, on which the kernel and GateD exchange messages. It has
several advantages over the ioctl() interface, including:

• variable subnet masks
• a two-way interface
• visible updates
• the ability to support changes
• the ability to be expanded

Variable Subnet Masks

Variable subnet masks are different masks that can be used on the subnets of the same
network. Because the network mask is passed to the kernel explicitly, these variable sub-
net masks can be used. Also, routes with masks that are more general than the natural
mask can be used. Using more general masks is known as “classless” routing.

Two-way Interface

A two-way interface allows GateD to change the kernel forwarding table with this inter-
face and allows the kernel to report changes to the forwarding table to GateD. A redirect
message that has modified the kernel forwarding table can now be reported, which means
that GateD no longer needs to monitor ICMP messages to learn about redirect messages.
Also, the kernel now indicates whether it processed the redirect message, which allows
GateD to safely ignore redirect messages that the kernel did not process.
9/26/02 97

Kernel Interface, GateD V.9.3.2
Visible Updates

Visible updates allow changes to the routing table by other processes, including the route
command, to be received via the routing socket. Because these changes are received,
GateD can ensure that the kernel forwarding table is in sync with the routing table. Also,
the system administrator can use the route command while GateD is running.

Changes

The ability to support changes allows routes in the kernel to be atomically changed.
(Because some early versions of the kernel routing socket code had bugs in the change
message processing, there are compilation time and configuration time options that cause
delete and add sequences to be used in lieu of change messages.)

Expansion

The ability to be expanded allows new levels of kernel/GateD communications to be added
by adding new message types.

18.3.2 Reading the Forwarding Table
When GateD starts up, it reads the kernel forwarding table and installs corresponding
routes into the routing table. These routes are called “remnants” and are timed out after
a three-minute interval, or as soon as a more attractive route is learned. This system
allows forwarding to occur while the routing protocols start learning routes.

Three main methods for reading the forwarding table from the kernel are via:

• kmem
• getkerninfo/sysctl
• OS-specific methods

18.3.2.1 Reading Forwarding Table via kmem
On many systems, especially those based on BSD 4.3, GateD must have knowledge of the
kernel's data structures to read the current state of the forwarding table. This method is
slow and subject to error if the kernel forwarding table is updated while GateD is in the
middle of reading it. Errors are likely to occur if the system administrator uses the route
command, or if an ICMP redirect message is received while GateD is starting up.

Due to an oversight, some systems, such as OSF/1, which are based on BSD 4.3 Reno or later,
do not have the getkerninfo() system call described below, which allows GateD to read
routes from the kernel without knowing about kernel internal structures. On these sys-
tems, it is necessary to read the kernel radix tree from the kernel by reading kernel mem-
ory. Reading the radix tree is even more error prone than reading the hash-based
forwarding table.

18.3.2.2 Reading the Forwarding Table via getkerninfo/sysctl
Besides the routing socket, BSD 4.3 Reno introduced the getkerninfo() system call. This
call allows a user process (such as GateD) to read various information from the kernel with-
out knowledge of the kernel data structures. In the case of the forwarding table, it is
returned to GateD automatically as a series of routing socket messages. This method pre-
98 9/26/02

Configuring GateD, V.9.3.2
vents the problems associated with the forwarding table changing while GateD is reading
it.

BSD 4.4 changed the getkerninfo() interface into the sysctl() interface, which takes
different parameters, but otherwise functions identically.

18.3.2.3 Reading the Forwarding Table via OS-specific Methods
Some operating systems, for example SunOS 5, define their own method of reading the ker-
nel forwarding table. The SunOS 5 version is similar in concept to the getkerninfo()
method.

18.4 Reading the Interface List
The kernel support subsystem of GateD is responsible for reading the status of the kernel's
physical and protocol interfaces periodically. GateD detects changes in the interface list
and notifies the protocols so that they can start or stop instances or peers. The interface
list is read one of the following two ways:

• SIOCGIFCONF
• sysctl

18.4.1 Reading the Interface List with SIOCGIFCONF
On systems based on BSD 4.3, 4.3 Reno and 4.3 Net/2, the SIOCGIFCONF ioctl interface is
used to read the kernel interface list. Using this method, a list of interfaces and some
basic information about them is returned by the SIOCGIFCONF call. Other information must
be learned by issuing other ioctls to learn the interface network mask, flags, MTU, metric,
destination address (for point-to-point interfaces), and broadcast address (for broadcast
capable interfaces).

GateD reads and re-reads this list every 15 seconds, looking for changes. When the routing
socket is in use, GateD also re-reads the list whenever a message is received, indicating a
change in routing configuration. Receipt of a SIGUSR2 signal also causes GateD to re-read
the list. The interval in which GateD reads the list can be explicitly configured in the inter-
face configuration. (See “Chapter 7 Interface Statement” on page 23 for more information
about the interface statement.)

18.4.2 Reading the Interface List with sysctl
BSD 4.4 added the ability to read the kernel interface list via the sysctl system call. The
interface status is returned automatically as a list of routing socket messages that GateD
parses for the required information.

BSD 4.4 also added routing socket messages to report interface status changes immedi-
ately. This allows GateD to react quickly to changes in interface configuration.

When sysctl is used, GateD re-reads the interface list only once a minute. It also re-reads
it on routing table change indications and when a SIGUSR2 is received. This interval can be
explicitly configured in the interface configuration. (See “Chapter 7 Interface Statement”
on page 23 for more information about the interface statement.)
9/26/02 99

Kernel Interface, GateD V.9.3.2
18.5 Reading Interface Physical Addresses
Later versions of the getkerninfo() and sysctl() interfaces return the interface physi-
cal addresses as part of the interface information. On most systems where information
about physical addresses is not returned, GateD scans the kernel physical interface list for
this information for interfaces with IFF_BROADCAST set, assuming that their drivers are
handled the same as Ethernet drivers. On some systems, such as SunOS 4 and SunOS 5, sys-
tem-specific interfaces are used to learn this information.

The interface physical addresses are useful for IS-IS. For IP protocols, they are not cur-
rently used, but may be in the future.

18.6 Reading Kernel Variables
At startup, GateD reads some special variables out of the kernel, which is usually done
with the nlist (or kvm_nlist) system call. Some systems use different methods.

The variables read include the status of UDP checksum creation and generation, IP for-
warding, and kernel version (for informational purposes). On systems where the routing
table is read directly from kernel memory, the root of the hash table or radix tree routing
table is read. On systems where interface physical addresses are not supplied by other
means, the root of the interface list is read.

18.7 Special Route Flags
The later BSD-based kernel supports the special route flags described below:

RTF_REJECT

Instead of forwarding a packet as with a normal route, routes with RTF_REJECT cause pack-
ets to be dropped and unreachable messages to be sent to the packet originators. This
flag is valid only on routes pointing at the loopback interface.

RTF_BLACKHOLE

Like the RTF_REJECT flag, routes with RTF_BLACKHOLE cause packets to be dropped, but
unreachable messages are not sent. This flag is valid only on routes pointing at the loop-
back interface.

RTF_STATIC

When GateD starts, it reads all the routes currently in the kernel forwarding table. Besides
interface routes, it usually marks everything else as a remnant from a previous run of
GateD and deletes it after a few minutes. This means that routes added with the route
command will not be retained after GateD has started. To fix this, the RTF_STATIC flag
was added. When the route command is used to install a route that is not an interface
route, it sets the RTF_STATIC flag. This signals to GateD that the route was added by the
system administrator and should be retained.
100 9/26/02

	Chapter 18 Kernel Interface
	18.1 Kernel Interface Overview
	18.2 Kernel Interface Syntax
	18.3 Forwarding Tables and Routing Tables
	18.3.1 Updating the Forwarding Table
	18.3.2 Reading the Forwarding Table

	18.4 Reading the Interface List
	18.4.1 Reading the Interface List with SIOCGIFCONF
	18.4.2 Reading the Interface List with sysctl

	18.5 Reading Interface Physical Addresses
	18.6 Reading Kernel Variables
	18.7 Special Route Flags

