
Chapter 14
Border Gateway Protocol (BGP)
14.1 BGP Overview

The Border Gateway Protocol (BGP) is an exterior, or inter-domain, routing protocol used for
exchanging routing information between autonomous systems. BGP is used to exchange
routing information between multiple transit autonomous systems as well as between tran-
sit and stub autonomous systems. BGP uses path attributes to provide more information
about each route and in particular to maintain an autonomous system (AS) path. An AS path
includes the AS number of each autonomous system that the route has transited, which pro-
vides information sufficient to prevent routing loops in an arbitrary topology. Path
attributes may also be used to distinguish between groups of routes to determine adminis-
trative preferences, allowing greater flexibility in determining route preference to achieve
a variety of administrative ends. GateD supports version 4 of the BGP protocol.

BGP supports two basic types of sessions between neighbors: internal (sometimes referred
to as IBGP) and external (EBGP). Internal sessions are run between routers in the same
autonomous system. External sessions run between routers in different autonomous sys-
tems. When an AS sends routes to an external peer, the local AS number is prepended to the
AS path. This means that routes received from an external peer are guaranteed to have the
AS number of that peer at the start of the path. In general, routes received from an internal
neighbor will not have the local AS number prepended to the AS path. Those routes will
have the same AS path that the route had when the originating internal neighbor received
the route from an external peer. Routes with no AS numbers in the path may be legitimately
received from internal neighbors. These routes should be considered internal to the
receiver's own AS.

External BGP sessions may or may not include a single metric, which BGP calls the Multi-Exit
Discriminator (MED) among the path attributes. MED is a 32-bit unsigned integer. Smaller
values of the MED are preferred. This metric is used only to break ties between routes with
equal preference from the same neighboring AS.

Internal BGP sessions carry at least one metric in the path attributes, which BGP calls the
Local_Pref. A route is preferred if its value for this metric is larger. Internal sessions may
optionally include a second metric, the MED, carried in from external sessions. The use of
these metrics is dependent on the type of internal protocol processing that is specified.

BGP collapses as many routes with similar path attributes as it can into a single update for
advertisement. It also sends another update once the maximum packet size is reached. The
churn caused by the loss of a neighbor will be minimized, and the initial advertisement sent
during peer establishment will be maximally compressed. BGP does not read information
from the kernel message by message, but fills the input buffer. BGP processes all complete
messages in the buffer before reading again. BGP also does multiple reads to clear all
9/26/02 61

Border Gateway Protocol (BGP), GateD V.9.3.2
incoming data queued on the socket. This feature may cause other protocols to be blocked
for prolonged intervals by a busy peer connection. All unreachable messages are collected
into a single message and sent prior to reachable routes during a flash update. Another
update is sent once the maximum packet size is reached.

Two internal routing groups exist: group type internal and group type routing. The
group type internal expects all peers to be directly attached to a shared subnet so
that, like external peers, the next hops received in BGP advertisements may be used
directly for forwarding. But group type routing will determine the immediate next hops
for routes by using the next hop received with a route from a peer, and using this next hop
to look up an immediate next hop in an IGP’s routes. Such groups support distant peers but
need to be informed of the IGP whose routes they are using to determine immediate next
hops.

For group type internal BGP, where possible, a single outgoing message is built for all
group peers based on the common policy. A copy of the message is sent to every peer in
the group. The copy includes possible adjustments to the next-hop field as appropriate to
each peer. Another update is sent once the maximum packet size is reached. This process
minimizes the computational load of running large numbers of peers in these types of
groups.

BGP allows unconfigured peers to connect if an appropriate group has been configured
with an allow clause.

14.2 BGP Syntax
 bgp (on | off)

 {

 [clusterid host-id ;]

 [defaultmetric metric ;]

 [discard-nonprefixed-confederations |

 ignore-nonprefixed-confederations]

 [open-on-accept ;]

 [preference bgppreference ;]

 [traceoptions trace_options ;]

 group type

 (external peeras autonomoussystem

 | internal peeras autonomoussystem

 | routing peeras autonomoussystem proto protocol)

 [ascount count] # external only

 [comm community_values]

 [confed]

 [gateway host]

 [holdtime time]

 [ignorefirstashop] # external only

 [keep (all | none)]
62 9/26/02

Configuring GateD, V.9.3.2
 [keepalivesalways]

 [localtcp local_address]

 [localas autonomous_system] # external only

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself] # external only

 [no-mp-nexthop]

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time] # external only

 [passive]

 [preference grouppreference]

 [preference2 grouppreference2]

 [recvbuffer buffer_size]

 [reflector-client [no-client-reflect]]

 # internal and routing types only

 [routetopeer]

 [sendbuffer buffer_size]

 [setpref metric] # internal and routing types only

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl] # routing only

 {

 #

 # There can be zero or one

 # "allow" clauses within a peer group.

 #

 allow {

 all ;

 | host ipnumber ;

 | classful network ;

 | network mask mask ;

 | network masklen number ;

 | network ‘/’ number ;

 } ;

 #
9/26/02 63

Border Gateway Protocol (BGP), GateD V.9.3.2
 # There can be zero or more

 # "peer" clauses within a peer group.

 #

 peer host

 [ascount count]

 [gateway host]

 [holdtime time]

 [ignorefirstashop]

 [keep (all | none)]

 [keepalivesalways]

 [localtcp local_address]

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself]

 [no-mp-nexthop]

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time]

 [passive]

 [preference peerpreference]

 [preference2 peerpreference2]

 [recvbuffer buffer_size]

 [reflector-client [no-client-reflect]]

 [routetopeer]

 [sendbuffer buffer_size]

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl]

 ;

 #

 # There should be at least one "allow" or "peer" clause

 # within a "group type" statement.

 #

 } ;

 } ;
64 9/26/02

Configuring GateD, V.9.3.2
Notes:

1. You must specify the Autonomous System and Router ID at the top of your configu-
ration file in order for BGP to work.

2. One or more group type clauses must appear within the bgp statement. The group
type clause is used to create peer groups that share common attributes.

3. Within the group type statement, the allow and/or peer clauses are used to spec-
ify the peers that are in the group.

4. The allow clause allows peering sessions to be established by hosts within one or
more networks. The allow clause should appear at most only once within a peering
group.

5. The peer clause is used to individually specify peers and to permit overriding spe-
cific peering group options.

6. The peer clause can appear multiple times within a peering group.

More detailed descriptions of these commands can be found on page 225 of the Command
Reference Guide. See “Examples of Importation into Multicast RIBs” on page 142 for more
information about importing and BGP. See “Exporting to BGP” on page 149 for more infor-
mation about exporting and BGP.

14.3 Extended BGP-4 Features
The following features are provided in extended BGP-4:

• AS Path prepend - GateD allows the prepending of Autonomous Systems.
• Route reflection (RFC 2796) - Route Reflection is supported for reduction of large

internal peer groups. See “Route Reflection Overview and Examples” on page 71.
• BGP Route Flap Damping (RFC 2439) - GateD supports the varied parameters on

Route Flap Damping.
• Community Support (RFC 1997) - GateD allows for filtering of routes based on com-

munities on import. In exporting routes, GateD allows the communities to be added
or deleted. See “Communities Overview and Examples” on page 77.

• BGP Confederations (RFC 3065) - BGP Confederations allows multiple internal ASs to
be used for scaling large networks. This confederation is represented as a single
external AS.

14.4 Route Selection
BGP selects the best path to an AS from all the known paths and propagates the selected
path to its neighbors.

14.5 Cisco® Interoperability
GateD configuration differs greatly from Cisco® routers. This section compares the follow-
ing:

• BGP route selection
• Local_Pref configuration
• MED configuration
• import and export policy configuration
9/26/02 65

Border Gateway Protocol (BGP), GateD V.9.3.2
14.5.1 Cisco® vs. GateD Route Selection
The following table compares Cisco® 11.0/12.0 and GateD bgp-4-16 draft route selection
policy:

Cisco® (11.0/12.0) GateD (bgp-4-16 draft)

Active Route - If the next
hop is inaccessible, do not
consider it.

Active Route - If GateD can-
not install a route in the
kernel, GateD will not con-
sider it (select the route as
the active route).

Configured Policy - Con-
sider larger BGP administra-
tive weights first.

Configured Policy - Con-
sider the route with small-
est preference, as
determined by the policy
defined in gated.conf. Ties
are broken by the
preference2 with the low-
est values.

Local_Pref - If the routes
have the same weight, con-
sider the route with higher
local preference.

Local_Pref - If the BGP Pref-
erences match (prefer-
ence and preference2),
prefer the route with the
highest BGP local prefer-
ence.

Local Router - If the routes
have the same local prefer-
ence, prefer the route that
the local router originated.

Shortest AS Path - If no
route is originated, prefer
the shorter AS path.

Shortest AS Path - If the
routes have the same BGP
local preference, prefer the
route with the fewest
Autonomous Systems listed
in its AS path.

IGP < EGP < Incomplete - If
all routes have paths with
the same AS path length,
prefer the lowest origin
code (IGP < EGP < Incom-
plete).

Origin IGP < EGP < Incom-
plete - If routes have the
same AS path length, prefer
the lowest origin code. Next
in preference is the route
with AS path origin of EGP.
Least preferred is an AS
path that is incomplete.
66 9/26/02

Configuring GateD, V.9.3.2
14.6 Local_Pref Configuration Example
The following configurations set a Local_Pref of 120 for peers in AS 200. Note that
GateD’s configuration uses the setpref command. The Local_Pref value comes from this
equation: Local_Pref = 254 - (global protocol preference for this route) +
metric. The global protocol preference for BGP is 170. (See “Assigning Preferences” on
page 11.) In this example, we use the syntax setpref 36 to specify a Local_Pref value of
120 (254-170+36 = 120) for BGP routes.

MED - If origin codes are the
same and all the paths are
from the same Autonomous
System, prefer the path
with the lowest Multi Exit
Discriminator (MED) metric.
A missing metric is treated
as zero.

MED (if not ignored) - If ori-
gin codes are the same, pre-
fer the highest (worst)
Multi-Exit Discriminator.
MEDs are only compared
between routes that were
received from the same
neighbor AS. This test is
applied only if the local AS
has two or more connec-
tions to a given neighbor AS.
A missing metric is treated
as the best (lowest) MED.
MED comparison must be
enabled; it is disabled by
default.

External/Internal - If the
MEDs are the same, prefer
external paths over inter-
nal paths.

Source IGP < EBGP < IBGP -
If the MEDs are the same,
prefer first the strictly inte-
rior route, then the strictly
exterior route, then the
exterior route learned from
an interior session.

Closest Neighbor - If IGP
synchronization is disabled
and only internal paths
remain, prefer the path
through the closest neigh-
bor.

Shortest IGP distance - If
the IGP distances are the
same, prefer the route
whose next hop IP address is
closer (with respect to the
IGP distance)

Lowest IP Address - If the
neighbors are equally close,
prefer the route with the
lowest IP address value for
the BGP router ID.

Lowest Router ID - If the
sources are the same, pre-
fer the route whose next
hop IP address is numeri-
cally lowest.

Cisco® (11.0/12.0) GateD (bgp-4-16 draft)
9/26/02 67

Border Gateway Protocol (BGP), GateD V.9.3.2
Cisco®:

router bgp 100

 network 192.168.0.0

 neighbor 192.168.1.1 remote-as 200

 neighbor 192.168.1.1 route-map set-local-pref in

route-map set-local-pref permit 10

 set local preference 120

GateD:

 group type internal peeras 200 setpref 36 { # (254-170+36) = 120

 peer 192.168.1.1;

 };

14.6.1 MED Configuration Example
The following configurations set a metric of 127 on routes exported to AS 200.

Cisco®:

ip as-path access-list 1 permit .*

route-map med permit 10

match as-path 1

set metric 127

GateD:

 export proto bgp as 200 {

 proto bgp aspath .* origin any {

 all metric 127;

 };

 };

14.6.2 Import Filter Example
Cisco®:

router bgp 200

 neighbor 192.168.10.32 remote-as 100

 neighbor 192.168.10.32 filter-list 2 in

ip as-path access-list 2 deny _690$

ip as-path access-list 2 permit .*
68 9/26/02

Configuring GateD, V.9.3.2
GateD:

 autonomoussystem 200;

 routerid 192.168.10.55;

 bgp on {

 group type external peeras 100 {

 peer 192.168.10.32;

 };

 };

 import proto bgp aspath (.* 690) origin any {

 all restrict;

 };

 import proto bgp aspath (.*) origin any {

 all;

 };

14.6.3 Export Filter Example
Cisco®:

router bgp 200

 neighbor 192.168.10.32 remote-as 100

 neighbor 192.168.10.32 filter-list 3 out

ip as-path access-list 3 deny _400$

ip as-path access-list 3 permit .*

GateD:

 autonomoussystem 200;

 routerid 192.168.10.55;

 bgp on {

 group type external peeras 100 {

 peer 192.168.10.32;

 };

 };

 export proto bgp as 100 {

 proto bgp aspath (.* 400) origin any {

 all restrict;

 };

 proto bgp aspath (.*) origin any {

 all;

 };
9/26/02 69

Border Gateway Protocol (BGP), GateD V.9.3.2
 };

14.7 BGP Issues

14.7.1 Third-Party Route Advertisement
Third-party route advertisements are a special form of advertisements to peers. In partic-
ular, any advertisement that has a next hop attribute that contains an IP address different
from the IP address of the peer sending the advertisement is called “third party.” A third-
party advertisement is legal, essentially, when the next hop that is advertised is on the
network that is used for peering.

GateD, by default, performs third party route advertisements when the next hop that it is
using, if used, would result in a legal third-party route advertisement. Also, by default,
GateD rejects third-party route advertisements that are illegal. There are two options that
can be used to alter this default behavior: nexthopself and gateway. The former deals
with routes originated by GateD, the latter with both sending and receiving third-party
advertisements.

nexthopself causes GateD to include a next hop of its own IP address in all advertise-
ments to an external peer. Hence, no advertisements that GateD sends could be consid-
ered third party.

The second option, gateway, is meant for use in situations where the peers are not directly
connected to one another. With the gateway option, you specify the first hop along the
path to the peer. GateD will then perform third-party route advertisements as though the
network shared with the gateway were really the network shared with the peer. GateD will
also substitute, on received advertisements, the address of the gateway for the address of
the next hop received.

The following is a sample BGP statement in which GateD turns off third-party route adver-
tisements with respect to peer 192.168.10.1, but not with respect to 192.168.10.2.

 bgp yes {

 group type external peeras 1 {

 peer 192.168.10.1 nexthopself;

 peer 192.168.10.2;

 };

 };

In the preceding example, if GateD learned reachability for network 192.168.20 with a
next hop of 192.168.10.100, the advertisements to peer 192.168.10.1 and peer
192.168.10.2 would differ: the advertisement to peer 192.168.10.1 would contain a next
hop of the GateD box, and the advertisement to peer 192.168.10.2 would contain a next
hop of 192.168.10.100.

And here is an example where the GateD box is attached to the network 192.168.10/24,
but the peer is not. Note that the gateway router (192.168.10.1) must be able to forward
packets to the peer (192.168.77.12).

 bgp yes {

 group type external peeras 1 {

 peer 192.168.77.12 gateway 192.168.10.1;
70 9/26/02

Configuring GateD, V.9.3.2
 };

 };

In this example, GateD will ensure that all of the next hops that it advertises to its peer
(192.168.77.12) are on the network shared with the gateway (192.168.10/24). Any next
hops that it receives from the peer (192.168.77.12) will be replaced with the address of
the gateway (192.168.10.1).

14.7.2 Determining Next Hops
In GateD, at present, there are three different cases for next hop determination: group
type internal, group type external, and anything else. Modification of the next hop
for group type external is covered in “Third-Party Route Advertisement” on page 70. As
far as IBGP peers are concerned, the BGP specification is clear: the next hop that is sent
shall be the next hop that was received.

group type internal is intended for peers on directly attached networks. If the peers
are not on directly shared networks, group type routing should be used.

For next hop determination, group type routing uses essentially the same algorithm that
external peers with the gateway option use. GateD determines which network is being
used to reach the immediate next hop to its peer. It then ensures that the next hop adver-
tised is on the same network as the immediate next hop.

14.7.3 AS Path Stuffing and Spoofing
AS Path “stuffing” or “prepending” is accomplished with the ascount command. ascount
is used to bias upstream peers' route selection. (Most routers prefer routes with shorter AS
Paths.)

In previous versions of BGP, the specification had not allowed the existence of looped AS
Paths. Loops must be ignored in order to allow AS prepending. The localas command can
be used to spoof the AS that BGP represents to a group of peers. The default AS is that con-
figured in the autonomoussystem statement. localas provides a way to speak BGP from
more than one AS.

14.7.4 Route Reflection Overview and Examples
Generally, all border routers in a single AS need to be internal peers of each other, and, in
fact, all non-border routers frequently need to be internal peers of all border routers.
Although this configuration is usually acceptable in small networks, it may lead to unac-
ceptably large internal peer groups in large networks. To help address this problem, BGP
supports route reflection for internal peer groups. When using route reflection, the rule
that a router may not readvertise routes from internal peers to other internal peers is
relaxed for some routers, called “route reflectors”. A typical use of route reflection might
involve a “core” backbone of fully meshed routers (all the routers in the group peered
directly with all other routers in the group). Some of these routers act as route reflectors
for routers that are not part of the core group.

Two types of route reflection are supported: routes can be sent to all internal peers or only
to internal peers that are not members of the client's group. By default, all routes received
by the route reflector from a client are sent to all internal peers (including the client's
9/26/02 71

Border Gateway Protocol (BGP), GateD V.9.3.2
group, but not the client itself). If the no-client-reflect option is enabled, routes
received from a route reflection client are sent only to internal peers that are not mem-
bers of the client's group. In this case, the client's group must itself be fully meshed. In
either case, all routes received from a non-client internal peer are sent to all route reflec-
tion clients.

Typically, a single router will act as the reflector for a set (or cluster) of clients. However,
for redundancy, two or more can also be configured to be reflectors for the same cluster. In
this case, a cluster ID should be selected using the clusterid keyword to identify all
reflectors serving the cluster. Gratuitous use of multiple redundant reflectors is not
advised, because it can lead to an increase in the memory required to store routes on the
redundant reflectors' peers.

No special configuration is required on the route reflection clients. From a client's perspec-
tive, a route reflector is simply a normal IBGP peer. Any BGP version 4 speaker should be
able to be a reflector client.

Refer to the route reflection specification document (RFC 1966) for further details. RFC
1966 can be found at:

http://www.ietf.org/rfc/rfc1966.txt

All routes received from any group member will be sent to all other internal neighbors, and
all routes received from any other internal neighbors will be sent to the reflector clients.
Because the route reflector forwards routes in this way, the reflector-client group need not
be fully meshed. If the no-client-reflect option is specified, routes received from
reflector clients will only be sent to internal neighbors that are not in the same group as
the sending reflector client. In this case, the reflector-client group should be fully meshed.
In all cases, routes received from normal internal peers will be sent to all reflector clients.

Note: It is necessary to export routes from the local AS back into the local AS when acting
as a route reflector. For example, suppose that the local AS number is 2. An export state-
ment like the following would suffice to make reflection work correctly.

 export proto bgp as 2 {

 proto bgp as 2 {all;}; # for reflection

 # other exports

 };

If the cluster ID is changed and GateD is reconfigured with a SIGHUP, all BGP sessions with
reflector clients will be dropped and restarted.

Another example follows.

 traceoptions "/var/tmp/gated.log" replace size 1000k files 3 all;

 autonomous-system 64512;

 routerid 192.168.11.1;

 bgp yes {

 group type internal peeras 64512 reflector-client {

 peer 192.168.10.2;

 peer 192.168.10.3;
72 9/26/02

http://www.ietf.org/rfc/rfc1966.txt

Configuring GateD, V.9.3.2
 peer 192.168.10.4;

 peer 192.168.10.5;

 peer 192.168.10.6;

 };

 group type internal peeras 64512 {

 peer 192.168.11.2;

 peer 192.168.11.3;

 };

 };

 static {

 default gw 172.16.0.1 retain;

 };

 import proto bgp as 64512 {

 all;

 };

 export proto bgp as 64512 {

 proto bgp as 64512 {

 all;

 };

 };

14.7.5 Weighted Route Damping Overview, Syntax, and Defaults
The basic idea of weighted route damping is to treat routes that are being announced and
withdrawn (flapping) at a rapid rate as unreachable.

If a route flaps at a low rate, it should not be suppressed at all, or suppressed only for a
brief period of time. With weighted route damping, the suppression of a route or routes
occurs in a manner that adapts to the frequency and duration that a particular route
appears to be flapping. The more a route flaps during a period of time, the longer it will be
suppressed. The adaptive characteristics of weighted route damping are controlled by a
few configurable parameters.

Currently, only routes learned via BGP are subject to weighted route damping, although no
protocols will announce suppressed routes. The weighted route damping configuration
statement is not within the BGP statement but is a separate and distinct configuration;
conceptually, it is much like interface or kernel statements. (Refer to “Chapter 7 Inter-
face Statement” on page 23 and “Chapter 18 Kernel Interface” on page 95 for more infor-
mation.)

The syntax for weighted route damping in GateD is:

 dampen-flap {
9/26/02 73

Border Gateway Protocol (BGP), GateD V.9.3.2
 [suppress-above metric ;]

 [reuse-below metric ;]

 [max-flap metric ;]

 [unreach-decay time ;]

 [reach-decay time ;]

 [keep-history time ;]

 };

suppress-above metric

suppress-above is the value of the instability metric at which route suppression will take
place (a route will not be installed in the FIB or announced even if it is reachable during
the period that it is suppressed).

reuse-below metric

reuse-below is the value of the instability metric at which a suppressed route will become
unsuppressed, if it is reachable but currently suppressed. The value assigned to reuse-
below must be less than suppress-above.

max-flap metric

max-flap is the upper limit of the instability metric. This value must be greater than the
larger of 1 and suppress_above.

Assigned to the above three parameters is a floating point number in units of flaps. Each
time a route becomes unreachable, 1 is added to the current instability metric.

reach-decay time

reach-decay specifies the time desired for the instability metric value to reach one half of
its current value when the route is reachable. This half-life value determines the rate at
which the metric value is decayed. A smaller half-life value will make a suppressed route
reusable sooner than a larger value.

unreach-decay time

unreach-decay acts the same as reach-decay except that it specifies the rate at which
the instability metric is decayed when a route is unreachable. It should have a value
greater than or equal to reach-decay.

keep-history time

keep-history specifies the period over which the route flapping history is to be main-
tained for a given route. The size of the configuration arrays described below is directly
affected by this value.

If only dampen-flap {}; is specified in the configuration file, then the following default
values are used:

 suppress-above = 3.0;

 reuse-below = 2.0;

 max-flap = 16.0;

 unreach-decay = 900;

 reach-decay = 300;
74 9/26/02

Configuring GateD, V.9.3.2
 keep-history = 1800

14.7.6 Setpref/Local_Pref Overview
Note: The term “preference” as used in setpref/Local_Pref is not the same as each pro-
tocol's preference in GateD. Each protocol has a parameter, preference, that specifies
how active routes will be selected. When a route has been learned from more than one
protocol, the active route will be selected from the protocol with the lowest preference.
Each protocol has a default preference in this selection. setpref/Local_Pref is BGP-spe-
cific and does not influence how active routes from BGP will compare to those learned
from other protocols.

The setpref option allows GateD to set the Local_Pref to reflect GateD’s own internal
preference for the route, as given by the global protocol preference value (which can be
found at “Preference Selection Precedence” on page 12). Local_Pref can be used by a
BGP speaker to inform other BGP speakers in its own autonomous system of the originating
speaker's degree of preference for an advertised route. The setpref option can be used
with routing or internal type groups. The Local_Pref is never set directly, but rather as a
function of the GateD preference and setpref metrics.

If the setpref option is set on one internal peer group, it must be set on all internal peer
groups. The setpref option may be used only on internal peer group types (internal or
routing).

The translation of GateD’s internal preference to and from Local_Pref is done as follows.
In the table below, metric is the argument to setpref. (For example, in the statement,
“setpref 100,” metric is 100.) “Exported Preference” is the GateD preference of the
exported route. “Imported Preference” is the GateD preference assigned to the imported
route.

In effect, any GateD preference of less than metric is exported such that it will be re-
imported (by a distant GateD) with a preference of exactly metric. Any preference of
metric or above will be exported such that it will be re-imported with the same prefer-
ence it had originally.

Local_Pref, as exported to BGP peers, is calculated as:

Local_Pref = 254 - (global protocol preference for this route) + metric

A value greater than 254 will be reset to 254. GateD will only send Local_Pref values
between 0 and 254. For example, suppose GateD is sending routes to an internal group
using “setpref 100,” and the routes are subsequently received by another router in the
group, also using “setpref 100.”

Exported
Preference Local_Pref Imported

Preference

Less than metric 254 metric

metric to 254 254 to metric metric to 254

N/A Greater than 254 metric
9/26/02 75

Border Gateway Protocol (BGP), GateD V.9.3.2
The table below lists some sample route preferences, the Local_Prefs with which the
routes will be sent, and the preferences with which the routes will be imported.

Notes:

• Non-GateD IBGP implementations may send Local_Prefs that are greater than 254.
When operating a mixed network of this type, it is recommended that all routers
restrict themselves to sending Local_Prefs in the range metric to 254.

• All routers in the same network that are running GateD and participating in IBGP
should use setpref uniformly. That is, if one router has setpref set, all should set
it, and all should use the same value of metric. The value for metric should be
selected to be consistent with the import policy in use in the network. For example,
if import policy sets GateD preferences ranging from 170 to 200, a setpref metric
of 170 would make sense. It is advisable to set metric high enough to avoid conflicts
between BGP routes and IGP or static routes.

Routes propagated by IBGP must include a Local_Pref attribute. Local_Pref may be used
by a BGP speaker to inform other BGP speakers in its own autonomous system of the origi-
nating speaker's degree of preference for an advertised route. Unless the setpref option
has been set, BGP sends the Local_Pref path attribute as 100.

GateD always uses the received Local_Pref to select between BGP routes that have the
same GateD preference. BGP routes with a larger Local_Pref are preferred.

Preference Before
Export Local_Pref Preference After

Import

170 184=(254-170+100) 170

171 183 171

254 100 254

100 254 100

5 254 100
76 9/26/02

Configuring GateD, V.9.3.2
For this topology:

 BGP2 AS 65000

 / \

 / \

 BGP1----BGP3 AS 65100

 | |

 | |

The following configuration will cause AS 65100 to prefer routes from the BGP1--BGP2 link.

BGP1 Configuration

 bgp yes {

 group type external peeras 65000 {

 peer 10.0.0.2; # BGP2

 };

 group type internal peeras 65100 setpref 100 {

 peer 192.168.10.2; # BGP3

 };

 };

BGP3 Configuration

 bgp yes {

 group type external peeras 65000 {

 peer 10.0.0.2; # BGP2

 };

 group type internal peeras 65100 setpref 99 {

 peer 192.168.10.1; # BGP1

 };

 };

14.7.7 Communities Overview and Examples
The community attribute allows the administrator of a routing domain to tag groups of
routes with a community tag. Using communities allows the administrator to limit the
routes that can be imported or exported. The tag consists of 2 octets of AS and 2 octets of
community ID. The community attribute is passed from routing domain to routing domain
to maintain the grouping of these routes. A set of routes may have more than one commu-
nity tag in its community attribute.
9/26/02 77

Border Gateway Protocol (BGP), GateD V.9.3.2
The import and export policy of a community is configured using the comm clause (or comm-
add clause) on the group, import, and export statements.

Please refer to the communities specification (RFC 1997) and its accompanying usage doc-
ument (RFC 1998) for further details on BGP communities. RFC 1997 can be found at:

http://www.ietf.org/rfc/rfc1997.txt

RFC 1998 can be found at:

http://www.ietf.org/rfc/rfc1998.txt

Communities can be specified as an AS and a community ID (with the comm-split key-
word) or as one of the distinguished special communities (with the comm keyword). When
originating BGP communities, the set of communities that is actually sent is the union of
the communities received with the route (if any), those specified in group policy (if any),
and those specified in export policy (if any). When receiving BGP communities, the update
is matched only if all communities specified in comm are present in the BGP update. (If
additional communities are also present in the update, it will still be matched.) The limit
of 25 communities in any single policy clause can be increased at compile time by increas-
ing the value of AS_COMM_MAX.

comm-split autonomous_system community_id

comm-split causes a community “tag” to be added to the transmitted path attributes. The
autonomous_system part of the community should be set to the local AS, unless there is a
specific need to do otherwise. This associates an AS with a community.

community no-export

community no-export is a special community that indicates that the routes associated
with this attribute must not be advertised outside a BGP AS boundary.

community no-advertise

community no-advertise is a special community that indicates that the routes associated
with this attribute must not be advertised to other BGP peers.

community no-export-subconfed

community no-export-subconfed is a special community that indicates that the routes
associated with this attribute must not be advertised to external BGP peers.

community none

community none is not actually a community, but rather a keyword that specifies that a
received BGP update is only to be matched if no communities are present. It has no effect
when originating communities.

The following example will import only routes from AS 203 that are stamped with commu-
nity 99:

 import proto bgp as 203

 comm {

 comm-split 203 99

 }

 {
78 9/26/02

http://www.ietf.org/rfc/rfc1997.txt
http://www.ietf.org/rfc/rfc1998.txt

Configuring GateD, V.9.3.2
 all;

 };

The following example will export only routes to AS 205 and from AS 203 that are stamped
with community 99:

 export proto bgp as 205

 comm {

 comm-split 203 99

 }

 {

 proto bgp static {

 all;

 };

 };

Communities are added to a route on export with the comm-add aspath options.

 export proto bgp as 205

 comm-add {

 comm-split 203 99

 }

 {

 proto bgp static {

 all;

 };

 };

14.7.8 Multi-Exit Discriminator Overview and Examples
The Multi-Exit Discriminator (MED) allows the administrator of a routing domain to choose
between various exits from a neighboring AS. This attribute is used only for decision-mak-
ing in choosing the best route to the neighboring AS. If all the other factors for a path to a
given AS are equal, the path with the lower MED value takes preference over other paths.

This attribute, if learned from an external AS, can be propagated only to internal peers,
unless you are in a BGP Confederation. The MED value can be propagated to BGP Confeder-
ation external peers. The MED value is propagated only if the med keyword is specified on
the BGP peers or group.

The MED attribute for BGP version 4 is a four-byte unsigned integer. MED is originated using
the metricout option of group or peer statements or the metric option of the export
statement. It is imported using the med keyword on the BGP group statement.
9/26/02 79

Border Gateway Protocol (BGP), GateD V.9.3.2
The metricout and metric options are used to specify the value of MED for exported
routes. The metricout option can be specified on the group statement:

 group type external peeras 31337 metricout 5 {

 peer 192.168.10.32;

 peer 192.168.10.33;

 };

It can also be specified on the peer statement:

 group type external peeras 31337 {

 peer 192.168.10.32 metricout 2;

 peer 192.168.10.33 metricout 3;

 };

The equivalent metric keyword can be specified on the export statement like this:

 export proto bgp as 31337 metric 5 {

 proto static {

 all;

 };

 };

And like this:

 export proto bgp as 31337 {

 proto bgp as 64000 metric 1 {

 all;

 };

 proto static metric 3 {

 all;

 };

 proto direct metric 7 {

 all;

 };

 };

The med keyword must be specified on the group statement for GateD to consider metrics
when calculating a next hop (the default action is to ignore MEDs).

14.7.9 Confederations
The BGP specification requires that all internal BGP speakers maintain a full mesh. As the
number of BGP speakers in an AS grows, the number of peering sessions that must be main-
tained grows factorially. This can put a great strain on infrastructure both in terms of the
hardware in routers and in terms of the amount of bandwidth consumed by routing traffic.

In order to help relieve the strain on resources, RFC 3065 specifies an alternative to full
mesh IBGP known as “BGP Confederations.” A BGP Confederation is a collection of autono-
80 9/26/02

Configuring GateD, V.9.3.2
mous systems that present themselves as a single AS to peers outside of the confederation.
RFC 3065 can be found at:

http://www.ietf.org/rfc/rfc3065.txt

All BGP speakers within a confederation are assigned two AS numbers. The first of these is
their normal AS number to be used within the confederation. The second is known as their
confederation ID.

All BGP speakers within a single confederation must be assigned the same confederation
ID. This confederation ID is the autonomous system number that BGP speakers outside of
the confederation see as consisting of all BGP speakers within the confederation, despite
the fact that the various members of the confederation can be within different autono-
mous systems.

When BGP speakers within the same confederation communicate with each other, they
perform identically to BGP speakers not in confederations with one exception: rather than
using the AS_SEQUENCE and AS_SET path attributes, they use the CONFED_SEQUENCE and
CONFED_SET path attributes. Then, when a BGP speaker within the confederation goes to
advertise routes to a BGP speaker not within the confederation, all attributes of the type
CONFED_SEQUENCE or CONFED_SET are stripped and replaced with a single AS_SEQUENCE
consisting of the confederation identifier. In this fashion, the internal AS topology of the
confederation is kept hidden from the rest of the world.

The following gated.conf shows a confederation border router. It has two peers outside of
the confederation, one inside the confederation, and some confederation internal peers.

 autonomoussystem 64512;

 confed-id 100;

 bgp yes {

 group type routing peeras 64512 confed proto ospf {

 peer 192.168.1.1 ;

 peer 192.168.1.4 ;

 } ;

 group type external peeras 65000 confed {

 peer 10.132.10.1 ;

 } ;

 group type external peeras 200 {

 peer 172.16.50.1 ;

 } ;

 } ;

 # Import everything from our internal confederation peers

 import proto bgp as 64512 {

 all ;

 } ;

9/26/02 81

http://www.ietf.org/rfc/rfc3065.txt

Border Gateway Protocol (BGP), GateD V.9.3.2
 # Import everything from our external confederation peer

 import proto bgp as 65000 {

 all ;

 } ;

 # Import everything from our external non-confederation peer

 import proto bgp as 200 {

 all ;

 } ;

 # Redistribute everything from our external non-confederation and our
 # external confederation peer to our internal peers. Note that we are
 # not operating as a route reflector, so we do not redistribute routes
 # from our internal peers to our other internal peers.

 export proto bgp as 64512 {

 proto bgp as 200 {

 all ;

 } ;

 proto bgp as 65000 {

 all ;

 } ;

 } ;

 # Redistribute our routes from our external confederation peer to our
 # internal confederation peers and our external non-confederation
 # peer.

 export proto bgp as 65000 {

 proto bgp as 200 {

 all ;

 } ;

 proto bgp as 64512 {

 all ;

 } ;

 } ;

 # We want to receive traffic for this AS on our external links, so
 # propogate everything from our confederation.

 export bgp as 200 {
82 9/26/02

Configuring GateD, V.9.3.2
 proto bgp as 64512 {

 all ;

 } ;

 proto bgp as 65000 {

 all ;

 } ;

 } ;

9/26/02 83

Border Gateway Protocol (BGP), GateD V.9.3.2
84 9/26/02

	Chapter 14 Border Gateway Protocol (BGP)
	14.1 BGP Overview
	14.2 BGP Syntax
	14.3 Extended BGP-4 Features
	14.4 Route Selection
	14.5 Cisco® Interoperability
	14.5.1 Cisco® vs. GateD Route Selection

	14.6 Local_Pref Configuration Example
	14.6.1 MED Configuration Example
	14.6.2 Import Filter Example
	14.6.3 Export Filter Example

	14.7 BGP Issues
	14.7.1 Third-Party Route Advertisement
	14.7.2 Determining Next Hops
	14.7.3 AS Path Stuffing and Spoofing
	14.7.4 Route Reflection Overview and Examples
	14.7.5 Weighted Route Damping Overview, Syntax, and Defaults
	14.7.6 Setpref/Local_Pref Overview
	14.7.7 Communities Overview and Examples
	14.7.8 Multi-Exit Discriminator Overview and Examples
	14.7.9 Confederations

