
Configuring GateD

V.9.3.2

Copyright © NextHop Technologies, 2002

Copyright Notice

Except as stated herein, none of the material provided as a part of this document may be cop-
ied, reproduced, distributed, republished, downloaded, displayed, posted or transmitted in
any form or by any means, including, but not limited to, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of NextHop Technologies, Inc.
Permission is granted to display, copy, distribute and download the materials in this document
for personal, non-commercial use only, provided you do not modify the materials and that you
retain all copyright and other proprietary notices contained in the materials unless otherwise
stated. No material contained in this document may be "mirrored" on any server without writ-
ten permission of NextHop. Any unauthorized use of any material contained in this document
may violate copyright laws, trademark laws, the laws of privacy and publicity, and communica-
tions regulations and statutes. Permission terminates automatically if any of these terms or
conditions are breached. Upon termination, any downloaded and printed materials must be
immediately destroyed.

Trademark Notice

The trademarks, service marks, and logos (the "Trademarks") used and displayed in this docu-
ment are registered and unregistered Trademarks of NextHop in the US and/or other countries.
The names of actual companies and products mentioned herein may be Trademarks of their
respective owners. Nothing in this document should be construed as granting, by implication,
estoppel, or otherwise, any license or right to use any Trademark displayed in the document.
The owners aggressively enforce their intellectual property rights to the fullest extent of the
law. The Trademarks may not be used in any way, including in advertising or publicity pertain-
ing to distribution of, or access to, materials in this document, including use, without prior,
written permission. Use of Trademarks as a "hot" link to any website is prohibited unless estab-
lishment of such a link is approved in advance in writing. Any questions concerning the use of
these Trademarks should be referred to NextHop at U.S. +1 734 222 1600.

Contents
Chapter 1
About this Manual .. 1

Overview .. 1
Audience .. 1
Configuring GateD Sections .. 1

Chapter 2
Overview and Statement Summary .. 3

What is GateD? ... 3
How to Configure GateD .. 4
Statement Grouping ... 4
Address and Prefix Formats .. 4
Route Preference and Route Selection ... 6
Statement Summary ... 6

Chapter 3
Preferences and Route Selection ...11

Preferences Overview ..11
Assigning Preferences ...11
Sample Preference Configurations ...12

Chapter 4
Trace Statements ...15

Trace Overview ...15
Trace Syntax ...15
Global, Protocol, and Packet Tracing ...15

Chapter 5
Directive Statements ...19

Chapter 6
Options Statements ...21

Options Overview ...21
Options Syntax ..21

Chapter 7
Interface Statement ..23

Overview ...23
Interface Syntax ..23
Default Configuration ..24
Sample Interface Configurations ...24
9/26/02 iii

Contents, GateD V.9.3.2
IP Interface Addresses and Routes ...25
Interface Aliases ..26

Chapter 8
Definition Statements ..29

Definition Overview ..29
Autonomous System Syntax ...29
Confed ID Syntax ...29
Router ID Syntax ...30
Martian Syntax ..30
Martian Examples ..31

Chapter 9
Multiple Routing Information Bases (RIBs) ..33

Multiple RIBs Overview ...33
Direct (Interface) Routes ..33
Static Routes ..33
Aggregate Routes ...33
Importing Routes ..34
gii ...35

Chapter 10
Configuration Initialization and Re-initialization ..37

Overview ...37
Phase 1 - Initialization of Process ..37
Phase 2 - Initialization of Tasks ..37
Phase 3 - Re-initialization of Tasks ..38

Chapter 11
Routing Information Protocol (RIP) ...39

Overview ...39
RIP Syntax ..41
RIP Sample Configurations ..42

Chapter 12
Open Shortest Path First (OSPF) ..45

OSPF Overview ..45
OSPF Syntax ...46
OSPF Sample Configurations ..50
Authentication ...52

Chapter 13
Intermediate System to Intermediate System (IS-IS) ..55

Overview ...55
IS-IS Syntax ..56
IS-IS Defaults ..59
IS-IS Sample Configurations ...60

Chapter 14
Border Gateway Protocol (BGP) ..61

BGP Overview ...61
iv 9/26/02

Configuring GateD, V.9.3.2
BGP Syntax .. 62
Extended BGP-4 Features ... 65
Route Selection ... 65
Cisco® Interoperability .. 65
Local_Pref Configuration Example ... 67
BGP Issues ... 70

Chapter 15
Router Discovery .. 85

Router Discovery Overview ... 85
Router Discovery Syntax ... 86
Router Discovery Defaults .. 87
Router Discovery Examples ... 87

Chapter 16
Internet Control Message Protocol (ICMP) .. 89

ICMP Overview .. 89
ICMP Syntax ... 89
ICMP Sample Configuration ... 89

Chapter 17
Redirect Processing ... 91

Redirect Overview ... 91
Why GateD Monitors Redirects ... 91
Redirect Processing .. 91
Configuration ... 92
Redirect Syntax ... 92
Configuration Defaults ... 92
Redirect Sample Configurations .. 92

Chapter 18
Kernel Interface ... 95

Kernel Interface Overview .. 95
Kernel Interface Syntax ... 95
Forwarding Tables and Routing Tables ... 96
Reading the Interface List .. 99
Reading Interface Physical Addresses ..100
Reading Kernel Variables ...100
Special Route Flags ...100

Chapter 19
Static Routes ...101

Static Overview ..101
Static Syntax ...101

Chapter 20
Distance Vector Multicast Routing Protocol (DVMRP)103

DVMRP Overview ..103
DVMRP Syntax ..103
Sample DVMRP Configurations ...103
DVRMP Defaults ..104
9/26/02 v

Contents, GateD V.9.3.2
Chapter 21
Protocol Independent Multicast (PIM) .. 105

Overview ... 105
PIM Syntax ... 105
Defaults .. 106
PIM Tracing Options .. 107
Examples ... 108

Chapter 22
Multi-Protocol - Border Gateway Protocol (MPBGP) 111

MPBGP Overview ... 111
MPBGP Syntax ... 111
MPBGP Configurable Options .. 113

Chapter 23
Multicast Source Discovery Protocol (MSDP) .. 115

MSDP Overview .. 115
MSDP Syntax ... 115
Sample MSDP Configurations .. 116
Defaults .. 117

Chapter 24
Internet Group Management Protocol (IGMP) ... 119

IGMP Overview .. 119
IGMP Syntax ... 119
Sample IGMP Configurations .. 120
Defaults .. 122

Chapter 25
Multicast Statement .. 123

Multicast Statement Overview .. 123
Multicast Statement Syntax ... 123
Multicast Sample Configurations ... 123
Multicast Statement Defaults ... 124

Chapter 26
Mstatic Statement ... 125

Mstatic Statement Overview .. 125
Mstatic Statement Syntax ... 125
Mstatic Sample Configurations .. 125
Mstatic Statement Defaults ... 126

Chapter 27
Routing Information Protocol, next generation (RIPng) 127

RIPng Overview ... 127
RIPng Syntax ... 127
RIPng Defaults ... 128
RIPng Sample Configurations .. 128

Chapter 28
Route Filtering ... 129
vi 9/26/02

Configuring GateD, V.9.3.2
Route Filtering Overview ...129
Route Filtering Syntax ..129
Route Filtering Defaults ..129
Route Filtering Examples ..130

Chapter 29
Matching AS Paths ...131

AS Path Overview ..131
Matching AS Path Syntax ...131
AS Path Regular Expressions ...131

Chapter 30
BGP Communities ..133

BGP Communities Overview ...133
BGP Communities and Extended Communities Configurations133
Syntax ...134

Chapter 31
Route Importation ...137

 Route Importation Overview ..137
Route Importation Syntax ..138
Route Importation Defaults ..140
Route Importation Examples ..141

Chapter 32
Route Exportation ...145

Route Exportation Overview ...145
Export Syntax ..146
Export Defaults ..149
Export Examples ...149

Chapter 33
Route Aggregation and Generation ...155

Route Aggregation Overview ..155
Aggregation and Generation Syntax ..156
Exporting Generated vs. Aggregated Routes ..159
Aggregating into Unicast and Multicast RIBs ..160

Chapter 34
Route Flap Damping ...163

Route Flap Damping Overview ..163
Route Flap Damping Syntax ..163

Chapter 35
SNMP Multiplexing (SMUX) ..165

SMUX Overview ..165
SMUX Syntax ..165
SNMP Query Examples ..165
SMUX Sample Configurations ..166

Chapter 36
Frequently Asked Questions ..167
9/26/02 vii

Contents, GateD V.9.3.2
Kernel Interactions ... 167
Protocols ... 168

Chapter 37
Glossary of Terms ... 173

Chapter 38
References ... 179

Requests for Comments (RFCs) by Number ... 179
viii 9/26/02

Chapter 1
About this Manual
1.1 Overview

This manual explains how to configure GateD on a UNIX system. For information on how to
install GateD, see Installing GateD. For information on specific commands, see the GateD
Command Reference Guide. For information on command line information, including
options, signals, and various support programs, see Operating GateD.

1.2 Audience
This manual is written for system administrators who are configuring GateD to route pack-
ets. You will need to understand basic routing concepts and UNIX commands to understand
this manual.

1.3 Configuring GateD Sections
In general, chapters of this manual have four sections:

• Overview
• Syntax
• Sample Configurations
• Protocol-specific Issues

1.3.1 Overview
In the Overview section, you can find an explanation of how the protocol (or GateD state-
ment) works. Overview information might include the RFC (or sections of the RFC) that
matches a particular GateD protocol, the algorithms used to route packets, and how
GateD’s implementation of the protocol differs from other routers.

1.3.2 Syntax
In the Syntax section, you can find all the options and subcommands for the GateD state-
ment, typed exactly as you would type them in your config file if you were to use every
option.

Keywords and special characters that the parser expects exactly are displayed in courier
bold font. Parameters are shown in courier italics font. Optional keywords or parame-
ters are shown in square brackets ('[' and ']'). The vertical bar ('|') is used to indicate a
choice of parameters. Parentheses ('(' and ')') are used to group keywords and parameters
when necessary.
9/26/02 1

About this Manual, GateD V.9.3.2
For example, in the syntax description:

 [backbone | (area areanumber)]

backbone and area are keywords. areanumber is a variable of area. The square brackets
indicate that these keywords are optional. The vertical bar indicates that either “back-
bone” or “area areanumber” can be specified. Because areanumber is in italics, you must
provide the value for this variable.

If you want more specific information about a command, refer to the GateD Command Ref-
erence Guide, which organizes commands alphabetically within protocols.

1.3.3 Sample Configurations
In the Sample Configurations section, you can find examples of valid syntax for the proto-
col or GateD statement. You can type (or copy and paste) these sections into your configu-
ration file.

1.3.4 Protocol-specific Issues
Any other issues specific to the protocol or to its GateD statement can be found in the sec-
tions that follow Sample Configurations. In some cases, we have included the defaults of
the protocol.
2 9/26/02

Chapter 2
Overview and Statement Summary
2.1 What is GateD?

GateD is a modular software program consisting of

• core services

- Check sum

- AS Path Regular Expression parsing

- Multiple RIBs

- GateD Interactive Interface (GII)

- Task and Timer functionality

- Weighted Route Damping

• protocol modules supporting multiple routing protocols

- RIP versions 1 and 2

- OSPF

- IS-IS

- BGP

- MP-BGP

- DVMRP

- IGMP

- PIM-SM

- MSDP

- IS-IS for v6

- RIPng

GateD was first used to interconnect the NSFNet and emerging regional networks and to
implement policy-based dynamic routing. GateD provides complete policy control for your
layer 3 IP routing, which allows a network administrator to control import and export of
routing information by

• individual protocol
• source and destination autonomous system
• origin attribute
• source and destination interface
• previous and next hop router
• specific destination address
9/26/02 3

Overview and Statement Summary, GateD V.9.3.2
The network administrator can specify a preference level for each combination of routing
information that is imported by using a flexible masking capability. Once the preference
levels are assigned, GateD makes a decision about which route to use independent of the
protocols involved.

GateD relies on the underlying operating system to provide some facilities, such as for-
warding and layer 2 management. It was designed with porting in mind and has been
ported to most popular operating systems.

2.2 How to Configure GateD
GateD reads its configuration from a file (gated.conf) which consists of a sequence of
statements, each terminated by a semi-colon (“;”). Statements are composed of com-
mands (and sometimes variables) separated by white space, which can be any combination
of blanks, tabs, and newlines. This structure makes it easy to identify parts of the configu-
ration that are associated with each other and with specific protocols. Comments can be
specified in either of two forms. One form begins with a pound sign (“#”) and runs to the
end of the line. The other form, C style, starts with “/*” and continues until it reaches “*/
.”

2.3 Statement Grouping
The configuration statements and the order in which these statements appear divide a
gated.conf file into six groups:

1. options group (See “Chapter 6 Options Statements” on page 21 for more informa-
tion.)

2. interface group (See “Chapter 7 Interface Statement” on page 23 for more informa-
tion.)

3. definition group (See “Chapter 8 Definition Statements” on page 29 for more infor-
mation.)

4. protocol group (See Chapters 11 through 27 for unicast, multicast, and IPv6 proto-
col statements.

5. static group (See “Chapter 19 Static Routes” on page 101 for more information.)
6. control and aggregate group (See “Chapter 33 Route Aggregation and Generation”

on page 155 for more information.)

See “Table 1: Summary of GateD Configuration Statements” on page 7 for more informa-
tion about these groupings.

If you enter a grouping out of order, an error occurs when the configuration file is parsed.

Two other types of statements do not fit into these categories: directive statements and
trace statements. These statements provide instructions to the parser and control tracing.
They do not relate to the configuration of any protocol, and they can occur anywhere in
the gated.conf file. (See “Chapter 5 Directive Statements” on page 19 for more informa-
tion about directive statements and “Chapter 4 Trace Statements” on page 15 for more
information about trace statements.)

2.4 Address and Prefix Formats
GateD allows configuration of both IPv4 and IPv6 address types. Normally GateD can rec-
ognize which type of address is being configured in a particular instance by the format of
the address.
4 9/26/02

Configuring GateD, V.9.3.2
IPv4 addresses are 32 bits long. The formats of Ipv4 addresses recognized by GateD are:

 d

 d.d

 d.d.d

 d.d.d.d

where d represents a number in the range 0-255 inclusive. Each d specifies 8 bits of the
address. If fewer than four d values are provided then the values provided specify the high
order values of the address. For example, 192.168 is equivalent to 192.168.0.0.

For IPv6 addresses, the forms recognized are those specified in RFC 237. IPv6 addresses
are 128 bits long and can be specified in one of three forms. In the preferred form, the
address is specified as 8 hexadecimal values separated by ':'s. Each hexadecimal value
specifies 16 bits. The hexadecimal digits a-f can be specified in either upper or lower case.
An example of the preferred form is:

 3FFd:201:1:7fff:0:0:0:a

The compressed form allows consecutive 0 bits in an IPv6 address to be specified as '::'.
The :: may only appear once in a given address. Examples of the compressed form are:

 :: (equivalent to 0:0:0:0:0:0:0:0)

 3ffd:201:1:7fff::a (equivalent to the preferred address example above)

 ::1 (equivalent to 0:0:0:0:0:0:0:1, the IPv6 loopback address).

The third form provides a way to specify IPv4 addresses to be embedded in an IPv6
address. In this case, the last 32 bits of the address are specified in dotted-quad form (all
four d values are required). Examples of this address form are:

 ::192.168.0.0

 ::ffff:64.32.1.0

In the case where an IPv6 Link-Local address is being configured, GateD allows the inter-
face associated with the Link-Local address to be specified as follows:

 fe80::%interface_name

where interface_name is the name of a physical interface on the machine on which GateD
is running. Gated inserts the interface index associated with interface_name in the Link-
Local address. This form is only valid for Link-Local addresses.

In many cases IPv4 and IPv6 addresses are combined with masks to configure prefixes.
There are two methods for specifying the mask: It can be specified as an IPv4 or IPv6
address proceeded by the mask keyword; or it can be specified as a length proceeded by
the masklen keyword or, more conventionally, by a '/'. In the "mask" case, the address type
of the mask must match the address type. Currently only contiguous bit masks are allowed
in GateD. Any non-zero address bits in positions that are covered by the specified mask
cause a parse error. Example prefix specifications are:

 10/8

 10.0.0.0 mask 255.0.0.0 (equivalent to 10/8)

 10 masklen 8 (equivalent to 10/8)

 3ffd::/16

 3ffd:: mask ffff:: (equivalent to 3ffd::/16)
9/26/02 5

Overview and Statement Summary, GateD V.9.3.2
 3ffd:: masklen 16 (equivalent to 3ffd::/16)

 ::/0 (IPv6 default address)

 0/0 (IPv4 default address)

 192.168.1/16 (invalid because the .1 is not covered by the mask)

When configuring route filters (See “Chapter 28 Route Filtering” on page 129) the key-
words default and all are used to indicate an address that matches only the default
address and the address that matches any address, respectively. In contexts where either
an IPv4 or IPv6 address filter could be specified it is sometimes necessary to proceed either
of these keywords with an inet or inet6 to indicate the desired address family. In such
contexts, specifying all or default by itself is taken to mean both address families. For
example, within a BGP import or export statement (when MPBGP is enabled)

 { all ; } ;

Is equivalent to

 {inet all ; inet6 all ; } ;

Note that ipv4 and inet4 are synonyms for inet and ipv6 is a synonym for inet6.

Although its use usually isn't recommended, GateD provides a feature where host names
can be used to configure certain addresses. The syntax for this type of configuration is

 host [inet | inet6] host_name

The optional inet or inet6 keyword indicates the type of address desired as a result of
the name resolution. If neither is specified, the type of address sought is determined by
context.

The host keyword can also proceed an IPv4 or IPv6 address instead of a host_name. In this
case the mask associated with the prefix will be the host mask for the address family of
the specified address. For example

 host 1.2.3.4

is equivalent to

 1.2.3.4/32

In contexts where an IPv4 prefix is allowed, GateD currently allows just an IPv4 address to
be specified. It then uses the "natural mask" as the mask for the prefix. While this "fea-
ture" is still provided by GateD, its use is strongly discouraged.

2.5 Route Preference and Route Selection
Preference is the value GateD uses to order preference of routes from one protocol or peer
over another. Preference can be set in the GateD configuration file in several different
configuration statements. Preference can be set based on one network interface over
another, from one protocol over another, or from one remote gateway over another. Flexi-
bility of preference configuration varies with the type of protocol being configured. (See
“Chapter 3 Preferences and Route Selection” on page 11 for more information about Route
Preference.)

2.6 Statement Summary
Table 1 lists each GateD configuration statement by name, indicates the chapter in which
the statement is described, identifies the statement group, provides a short synopsis of the
6 9/26/02

Configuring GateD, V.9.3.2
statement’s function, and lists the type of protocol. More detailed definitions and descrip-
tions of each of the eight groups of GateD statements follow.

These statements must appear in statement group order in the configuration file. (For
example, if definition and protocol statements are both to be included, definition state-
ments must precede the protocol statements.)

Table 1: Summary of GateD Configuration Statements

Statement
Name

Chapter in which
the Statement is
Described

Statement
Group

Statement
Function

Type of
Protocol

traceoptions Chapter 4 Trace Global
tracing
parameters

n/a

%directory Chapter 5 Directive Sets the direc-
tory for include
files

n/a

%include Chapter 5 Directive Includes a file in
gated.conf

n/a

options Chapter 6 Option Sets GateD
options

n/a

interfaces Chapter 7 Interface Defines GateD
interfaces

n/a

autonomous-
system

Chapter 8 Definition Sets the AS
number for this
router

n/a

routerid Chapter 8 Definition Sets the router
ID for BGP and
OSPF

n/a

martians Chapter 8 Definition Defines invalid
destination
addresses

n/a

rip Chapter 11 Protocol Configures RIP
protocol

Unicast

ospf Chapter 12 Protocol Configure OSPF
protocol

Unicast

isis Chapter 13 Protocol Configures IS-IS
protocol

Unicast

bgp Chapter 14 Protocol Configures BGP
protocol

Unicast
9/26/02 7

Overview and Statement Summary, GateD V.9.3.2
routerdiscov-
ery

Chapter 15 Protocol Configures the
Router Discov-
ery protocol

Pseudo-
protocol

icmp Chapter 16 Protocol Configures the
processing of
general ICMP
packets

Pseudo-
protocol

redirect Chapter 17 Protocol Configures the
processing of
ICMP redirects

Pseudo-
protocol

kernel Chapter 18 Protocol Configures ker-
nel interaction
options

Pseudo-
protocol

dvmrp Chapter 20 Protocol Configures
DVMRP
protocol

Multicast

pim Chapter 21 Protocol Configures PIM
protocol

Multicast

msdp Chapter 23 Protocol Configures MSDP
protocol

Multicast

igmp Chapter 24 Protocol Enables IGMP Multicast

multicast Chapter 25 Protocol Sets interface-
specific multi-
cast options

n/a

ripng Chapter 27 Protocol Configures RIP
next generation
protocol

Unicast (v6)

static Chapter 19 Static Configures
static routes

n/a

mstatic Chapter 26 Static Configures
static group
joins

n/a

import Chapter 31 Control Sets policy for
the routes
installed in the
RIBs

n/a

Table 1: Summary of GateD Configuration Statements

Statement
Name

Chapter in which
the Statement is
Described

Statement
Group

Statement
Function

Type of
Protocol
8 9/26/02

Configuring GateD, V.9.3.2
export Chapter 32 Control Sets the policy
for the routes to
export from one
protocol to
another

n/a

aggregate Chapter 33 Control Sets the
aggregation pol-
icy

n/a

generate Chapter 33 Control Sets conditions
for generating a
default route

n/a

Table 1: Summary of GateD Configuration Statements

Statement
Name

Chapter in which
the Statement is
Described

Statement
Group

Statement
Function

Type of
Protocol
9/26/02 9

Overview and Statement Summary, GateD V.9.3.2
10 9/26/02

Chapter 3
Preferences and Route Selection
3.1 Preferences Overview

Preference is the value that GateD uses to select one route over another when more than
one route to the same destination is learned from different protocols or peers. Preference
can be set in the GateD configuration files in several different configuration statements.
Preference can be set based on one network interface over another, one protocol over
another, or one remote gateway over another. Preference cannot be used to control the
selection of routes within an interior gateway protocol. This control is accomplished auto-
matically by the protocol based on metric. Preference can be used to select routes from the
same exterior gateway protocol (such as BGP) learned from different peers or autonomous
systems. Each route has only one configurable preference value associated with it, even
though preference can be set at many places in the configuration file. Simply, the last or
most specific preference value set for a route is the value used.

The preference value is an arbitrarily assigned value used to determine the order of routes
to the same destination in a single routing database. The active route is chosen by the low-
est preference value. Some protocols implement a second preference (preference2),
sometimes referred to as a tie-breaker. BGP and OSPF protocols use preference2.
preference2 is for internal use only and is not configurable. Its value is used only when
comparing routes with equal values of preference.

3.2 Assigning Preferences
A default preference is assigned to each source from which GateD receives routes. Prefer-
ence values range from 0 to 255, with the lowest number indicating the most preferred
route.

The following table summarizes the default preference values for routes learned in various
ways. The table lists the statements (some of which are clauses within statements) that set
preference and shows the types of routes to which each statement applies. The table lists
the preference precedence between protocols and the default preference for each type of
route. The more narrow the scope of the statement, the higher the precedence its prefer-
ence value is given, but the smaller the set of routes it affects.
9/26/02 11

Preferences, GateD V.9.3.2
3.3 Sample Preference Configurations
 interfaces {

 interface 138.66.12.2 preference 10 ;

 } ;

 rip yes {

 preference 90 ;

 } ;

 import proto rip gateway 138.66.12.1 preference 75 ;

Table 2: Preference Selection Precedence

Preference of Defined by Statement Default

Direct connected networks interface 0

Routes to interface aliases 1

OSPF routes ospf 10

IS-IS level 1 routes isis level 1 15

IS-IS level 2 routes isis level 2 18

Redirects redirect 30

Routes learned via route
socket

kernel 40

Routes installed via SNMP 50

Routes learned via router dis-
covery

router-discovery 55

Static routes from config static 60

RIP routes rip or ripng 100

Point-to-point interface 110

Routes to interfaces that are
down

interface 120

Aggregate/generate routes aggregate/generate 130

OSPF AS external routes ospf 150

BGP routes bgp 170

Routes in kernel at startup 254
12 9/26/02

Configuring GateD, V.9.3.2
In these statements, the preference applicable to routes learned via RIP from gateway
138.66.12.1 is 75. The last preference applicable to routes learned via RIP from gateway
138.66.12.1 is defined in the accept statement. The preference applicable to other RIP
routes is found in the rip statement. The preference set on the interface statement
applies only to the route to that interface.
9/26/02 13

Preferences, GateD V.9.3.2
14 9/26/02

Chapter 4
Trace Statements
4.1 Trace Overview

Trace statements control tracing options. GateD’s tracing options may be configured at
many levels. Tracing options include the file specifications, control options, and global and
protocol-specific tracing options. Unless overridden, tracing options from the next higher
level are inherited by lower levels. For example, BGP peer tracing options are inherited
from BGP group tracing options, which are inherited from global BGP tracing options, which
are inherited from global GateD tracing options. At each level, additional tracing specifica-
tions override the inherited options.

When more than one trace options line is used in a section, the “last” trace options line to
be parsed by GateD is the one that takes effect. In the case of global tracing, any trace files
specified in any trace options line will be created, but tracing will cease for that file when
the next trace options line is parsed.

4.2 Trace Syntax
 traceoptions [trace_file [replace]

 [size tracesize [k | m] files tracefiles]]

 [nostamp][trace_global_options]

 [except trace_global_options] ;

 traceoptions none ;

More detailed descriptions of these commands can be found on page 3 of the Command Ref-
erence Guide.

This sequence of options is used to specify the name of the trace file (trace_file) or files
and parameters about these files. Trace files can be specified as a global parameter for all
of GateD, for a protocol instance, or for a peer or peers within a protocol.

4.3 Global, Protocol, and Packet Tracing
GateD uses three types of trace options: those that affect only global operations, those that
have potential significance to protocols, and those that affect packets.

4.3.1 Global Significance Only
The trace_options that have only global significance are:
9/26/02 15

Trace Statements, GateD V.9.3.2
parse
parse specifies to trace the lexical analyzer and parser. parse is used mostly by GateD
developers for debugging configuration parsing processing.

adv
adv specifies to trace the allocation of and freeing of policy blocks. adv is used mostly by
GateD developers for debugging the use of adv-entry structures in parsing.

symbols
symbols specifies to trace symbols read from the kernel at startup. The only useful way to
specify this level of tracing is via the -t option on the command line, because the symbols
are read from the kernel before parsing the configuration file.

iflist
iflist specifies to trace the reading of the kernel interface list. To trace the initial read
of the interface information, specify iflist with the -t option on the command line,
because the first interface scan is done before reading the configuration file.

4.3.2 Protocol Significance
The trace_options that have potential significance to protocols are:

all
all specifies to turn on detail, packets, and all of the following:

general
general specifies to trace both normal and route.

normal
normal specifies to trace normal protocol occurrences. Abnormal protocol occurrences are
always traced.

route
route specifies to trace routing table changes for routes installed by this protocol or peer.

state
state specifies to trace state machine transitions in the protocols.

policy
policy specifies to trace application of protocol- and user-specified policy to routes being
imported and exported.

task
task specifies to trace system interface and processing associated with this protocol or
peer.

timer
timer specifies to trace timer usage by this protocol or peer.

none
none disables all tracing for this protocol or peer.

Not all of the above options apply to all of the protocols. In some cases, their use does not
make sense (for instance, RIP does not have a state machine), and in some cases, the
requested tracing has not been implemented.

When protocols inherit their tracing options from the global tracing options, tracing
options that don’t make sense (such as parse, adv, and packet tracing options) are masked
out.
16 9/26/02

Configuring GateD, V.9.3.2
Global tracing statements have an immediate effect, especially parsing options that affect
the parsing of the configuration file. Tracing values inherited by protocols are initially
inherited from the global options that are currently in effect as the protocol configuration
entries are parsed, unless they are overridden by more specific options. After the configu-
ration file is read, protocol tracing options that were not explicitly specified are inherited
from the global options in effect at the end of the configuration file.

4.3.3 Packet Tracing
These options apply to the protocol-specific traceoptions statements, but are supplied
here for reference.

[detail] [send | receive] packets

Tracing of packets is very flexible. For any given protocol, there are one or more options
for tracing packets. Protocol-specific tracing options are described in the GateD Command
Reference Guide under the protocols’ trace commands. All protocols allow use of the
packets keyword for tracing all packets sent and received by the protocol. Most protocols
have other options for limiting tracing to a useful subset of packet types. These tracing
options can be further controlled with the following modifiers:

detail
Normally, packets are traced in a terse form of one or two lines. When detail is specified,
a more verbose format provides further detail on the contents of the packet. If a protocol
allows for several different types of packet tracing, modifiers may be applied to each indi-
vidual type. However, be aware that within one tracing specification, the trace options are
“orred” together, so specifying detail packets will turn on full tracing for all packets.

send or recv
send or recv limit the tracing to packets sent or received, respectively. If neither is speci-
fied, both sent and received packets will be traced. Only one of these keywords can be
specified in any given instance.

detail, send, and recv are all optional. If detail is specified, it must immediately pre-
cede any send or recv specification. If detail and/or send or recv is specified, at least
one packet type trace option must immediately follow.
9/26/02 17

Trace Statements, GateD V.9.3.2
18 9/26/02

Chapter 5
Directive Statements

Directive statements provide direction to the GateD configuration language parser about
included files and the directories in which these files reside. Directive statements are
immediately acted upon by the parser. Other statements terminate with a semicolon (“;”),
but directive statements terminate with a new line. The two directive statements are:

%directory “directory”
%directory defines the directory in which the included files are stored. When %directory
is used, GateD looks in the directory identified by the path name for any included files that
do not have a fully qualified filename (for example, do not begin with “/”). %directory
does not actually change the current directory; it just specifies the prefix applied to the
included file names. Refer to “%directory” on page 7 in the GateD Command Reference
Guide for additional information.

%include “filename”
%include identifies an include file. The content of the file is included in the gated.conf
file at the point in the gated.conf file where the %include directive is encountered. If the
filename is not fully qualified, (for example, it does not begin with “/”), the file is consid-
ered to be relative to the directory defined in the last %directory directive. The %include
directive statement causes the specified file to be parsed completely before resuming with
this file. Nesting of up to 10 levels is supported. The maximum nesting level may be
increased by changing the definition of FI_MAX in parse.h. Refer to “%include” on page 8
in the GateD Command Reference Guide for additional information.

In a complex environment, segmenting a large configuration into smaller, more easily under-
stood segments might be helpful. One of the great advantages of GateD, however, is that it
combines the configuration of several different routing protocols into a single file. Segment-
ing a small file unnecessarily complicates routing configurations.
9/26/02 19

Directive Statements, GateD V.9.3.2
20 9/26/02

Chapter 6
Options Statements
6.1 Options Overview

Options statements allow specification of global options. If used, options must appear
before any other type of configuration statement in the gated.conf file.

6.2 Options Syntax
The options statements syntax is:

 options

 [nosend]

 [noresolv]

 [syslog [upto] log_level]

 [mark time]

 ;

nosend - causes GateD to never transmit packets. This is useful for testing and debugging.

noresolv - Do not try to resolve host names to IP addresses.

syslog - sets what GateD logs via syslog. Optionally, upto can be specified to indicate that
everything up to the specified log level is logged. For more information, consult the setlog-
mask(3) man page.

mark - forces GateD to write a line in the log file every time seconds. The line is simply
mark and the current time. This provides a way to confirm that GateD is still running. Note
that GateD does not write the mark line by default.

More detailed descriptions of these commands can be found on page 9 of the Command Ref-
erence Guide.
9/26/02 21

Options Statements, GateD V.9.3.2
22 9/26/02

Chapter 7
Interface Statement
7.1 Overview

An interface statement connects a router or host to a layer 1 subsystem.

7.2 Interface Syntax
GateD’s interface syntax provides support for aliases and tunnels.

 interfaces {

 [options

 [strictinterfaces]

 [scaninterval time]

 [aliases-nexthop (primary | lowestip)] ;]

 [interface interface_list

 [preference interfacepreference]

 [down preference downpreference]

 [enable]

 [disable]

 [passive]

 [simplex]

 [reject]

 [blackhole]

 [AS autonomoussystem]

 [alias primary address mask mask]

 [aliases-nexthop (primary | lowestip)] ;]

 [define (subnet | p2p) local address

 [broadcast address]

 [remote address]

 [tunnel encapsulation_protocol]

 [netmask mask]

 [multicast | nomulticast]

 [unicast | nounicast] ;]
9/26/02 23

Interface Statements, GateD V.9.3.2
 };

More detailed descriptions of these commands can be found on page 15 of the Command
Reference Guide.

7.3 Default Configuration
The default configuration for the interface clause is:

 interfaces {

 options scaninterval 60 ;

 aliases-nexthop primary ;

 interface all down-preference 120 ;

 interface all preference 0 ;

 interface all enable;

 } ;

Notes:

• On systems without a routing socket, the scaninterval is reduced to 15 seconds to
allow GateD to notice changes more quickly.

• On systems with a routing socket, a scaninterval of zero disables periodic interface
scans.

• Systems that utilize a routing socket that do not prevent loss of data on the socket
may result in a FIB that is inconsistent with GateD’s routing table. A scaninterval of
zero is highly discouraged on systems with a “lossy” routing socket.

7.4 Sample Interface Configurations
 interfaces {

 define p2p local 198.108.60.89 remote

 141.213.10.41 multicast nounicast

 tunnel ipip;

 define subnet local 192.168.12.114 netmask

 255.255.255.0;

 define subnet local 192.168.13.129 netmask

 255.255.255.252

 broadcast 192.168.13.131;

 define p2p local 192.168.13.114 remote

 192.168.13.116;

 };

The define statement allows the user to configure an interface that may not exist at the
time of setup. The interface may then be used in protocol configurations, with the config-
uration becoming active when the interface appears and is up.
24 9/26/02

Configuring GateD, V.9.3.2
The first define configures a multicast-only IP-in-IP tunnel usable by routing protocols for
the multicast RIB. (See “Chapter 9 Multiple Routing Information Bases (RIBs)” on page 33
for more information about multicast RIBs.) Note that the keywords multicast and nou-
nicast here are redundant with the defaults for tunnel ipip. In fact, the standard multi-
cast kernel cannot support any other combination.

The second define tells GateD to treat the interface with the local address
192.168.12.114 as a subnet (192.168.12/24), even if it’s actually a point-to-point link.
(This does, however, require that the actual remote point-to-point address fall within the
configured subnet prefix.)

The third define shows how a /30 may be implemented in the define statement. The
define tells GateD to treat the interface with a local address of 192.168.13.129, a net-
mask of 255.255.255.252, and a broadcast of 192.168.13.131.

The fourth define tells GateD to treat the interface with the local address 192.168.13.114
as a point-to-point link to 192.168.13.116, even if it’s not actually a point-to-point link. (If
it’s actually a subnet, this requires that the configured remote point-to-point address fall
within the actual subnet prefix.)

7.5 IP Interface Addresses and Routes
The BSD 4.3 and later networking implementations allow four types of interfaces. Some
implementations allow multiple protocol addresses per physical interface. These imple-
mentations are mostly based on BSD 4.3 Reno or later.

loopback
loopback must have the address of 127.0.0.1. Packets sent to loopback are sent back to
the originator. This interface is also used as a catch-all interface for implementing other
features, such as reject and blackhole routes. Although a netmask is reported on this
interface, it is ignored. Assign an additional address to this interface that is the same as
the OSPF or BGP routerid to allow routing to a system based on the routerid that will
work if some interfaces are down. This may require advertising the address in the protocol.

broadcast
broadcast is a multi-access interface capable of a physical level broadcast, such as Ether-
net, Token Ring and FDDI. This interface has an associated subnet mask and broadcast
address. The interface route to a broadcast network will be a route to the complete sub-
net.

point-to-point
point-to-point is a tunnel to another host, usually on some sort of serial link. This inter-
face has a local address and a remote address. Although it may be possible to specify mul-
tiple addresses for a point-to-point interface, there does not seem to be a useful reason
for doing so. The remote address must be unique among all the interface addresses on a
given router. The local address may be shared among many point-to-point and up to one
non-point-to-point interface. point-to-point is technically a form of the routerid
method for addressless links. This technique conserves subnets because none are required
when using it.

If a subnet mask is specified on a point-to-point interface, it is only used by RIP version 1
to determine which subnets may be propagated to the router on the other side of this
interface. All point-to-point interfaces are, by default, given a host subnet mask in GateD.
9/26/02 25

Interface Statements, GateD V.9.3.2
non-broadcast multi-access or nbma
nbma is multi-access, but not capable of broadcast. An example of this would be frame
relay and X.25. This type of interface has a local address and a subnet mask.

To ensure consistency, GateD installs a route in the kernel’s FIB (Forwarding Information
Base) for the address of each IP interface that is configured and up.

For point-to-point interfaces, GateD installs some special routes. If the local address on
one or more point-to-point interfaces is not shared with a non-point-to-point interface,
GateD installs a route to the local address pointing at the loopback interface with a pref-
erence of 110. This insures that packets originating on this router destined for this local
address are handled locally. OSPF prefers to route packets for the local interface across
the point-to-point link where they will be returned by the router on the remote end. This
is used to verify operation of the link. Because OSPF installs routes with a preference of
10, these routes will override the route installed with a preference of 110.

If the local address of one or more point-to-point interfaces is shared with a non-point-to-
point interface, GateD installs a route to the local address with a preference of 0 that will
not be installed in the forwarding table. This is to prevent protocols like OSPF from routing
packets to this address across a serial interface when this system could be functioning as a
host.

When the status of an interface changes, GateD notifies all the protocols, which take the
appropriate action. GateD assumes on startup that interfaces that are not marked UP do
not exist.

GateD ignores any interfaces that have invalid data for the local, remote or broadcast
addresses, or the subnet mask. Invalid data includes zeros in any of these fields. GateD will
also ignore any point-to-point interface that has the same local and remote addresses.
GateD assumes that the interface is in some sort of loopback test mode.

Interface aging is turned off by default. It can be turned on again via a compile-time
option. Refer to the passive statement on page 38 of the GateD Command Reference
Guide.

7.6 Interface Aliases

7.6.1 Aliases Overview
GateD allows the use of aliases on interfaces -- more than one logical interface can exist
for each physical interface on the machine. Typically, you create these logical interfaces
using the ifconfig(1) command. Two options in the interfaces command affect the
operation of GateD with respect to aliases.

1. aliases-nh (lowestip | primary)
2. interface interface-name alias primary address mask mask

The configuration information in the interfaces command directly affects the behavior of
the protocols when aliases are configured. When used with the options command,
aliases-nh specifies the default behavior. When used with the interface command,
aliases-nh indicates the default for aliases of the physical interface(s) specified.
26 9/26/02

Configuring GateD, V.9.3.2
7.6.2 Using aliases-nh primary (default)
When configured with aliases-nh primary, which is the default, GateD chooses a pri-
mary address on each subnet that is configured on the interface. The primary chosen by
GateD is based on the order in which the addresses are read from the kernel. For example,
consider a machine with one physical interface, le0, with five logical addresses:

le0: flags=1000843 <UP, BROADCAST, RUNNING, MULTICAST, IPv4> mtu 1500

 inet 172.16.0.178 netmask ffff0000 broadcast 172.16.255.255

 inet 172.16.0.179 netmask ffff0000 broadcast 172.16.255.255

 inet 12.1.1.2 netmask ff000000 broadcast 12.255.255.255

 inet 12.1.1.1 netmask ff000000 broadcast 12.255.255.255

 inet 192.168.10.1 netmask ffffff00 broadcast 192.168.10.255

In this case, GateD will mark the following interfaces as primary addresses:

• 172.16.0.178 for subnet 172.16.0.0/16
• 12.1.1.2 for subnet 12.0.0.0/8
• 192.168.10.1 for subnet 192.168.10.0/24

The flags for the interface can be seen in the gii show interfaces command, in the trace
file after an interface scan, or in the GateD dump file. (See “GateD Interactive Interface”
in Operating GateD, for more information about gii.)

When configured as above, the protocols use the primary address for operation. Attempt-
ing to use a logical address that has not been marked as primary will lead to undesired
results (to change the primary addresses, see below).

When using a physical interface name in the configuration file, some protocols will
attempt to operate on all primary addresses on that interface. Here is an example OSPF
statement:

 ospf yes {

 backbone {

 interface le0 cost 1;

 }

 }

When configured this way, OSPF will run over the three primary addresses shown above. In
the case where there are no neighbors on some of the interfaces, stub links will be
announced to these networks. See “Chapter 12 Open Shortest Path First (OSPF)” on
page 45 for more information about OSPF.

To mark primary addresses for a subnet in the configuration file, use the alias primary
option. GateD will allow only one primary address to be configured for each subnet on the
interface -- attempting to configure more than one will result in a parse error. Note that,
in addition to the interface address, the mask must be specified.

For interface routes, the next hop for a direct subnet will be the primary address.
9/26/02 27

Interface Statements, GateD V.9.3.2
7.6.3 Using aliases-nh lowestip
Versions of GateD prior to 8.0 defaulted to using the lowest IP of an interface for all proto-
col operations. This feature has been left in place for compatibility. Note that aliases are
not really supported with this option; the only valid logical interface is the interface with
the numerically lowest IP address.

When configured to use lowestip, GateD will install routes to direct nets with a next hop
of the lowest IP address for that network configured on the machine. We recommend that
operators avoid using this option.
28 9/26/02

Chapter 8
Definition Statements
8.1 Definition Overview

Definition statements are general configuration statements that relate to all of GateD, or at
least to more than one protocol. The four definition statements are autonomoussystem,
confed-id, routerid, and martians. If used, all of these definition statements must
appear before any other type of configuration statement in the gated.conf file.

8.2 Autonomous System Syntax
 autonomoussystem autonomous_system [loops number] ;

autonomoussystem sets the autonomous system (AS) number of this router to be
autonomous_system. autonomoussystem is required if BGP is in use. The AS number is
assigned by the Regional Internet Registries (RIRs). When using the BGP confederation
option, the AS number is the internal sub-AS number and should be allocated out of the
reserved private AS space, 64512-65534. See RFC 3065, “BGP Confederations” and RFC
1930, “Guidelines for Creation, Selection and Registration of an Autonomous System” for
details.

loops is only for protocols supporting AS paths. For example, BGP loops controls the num-
ber of times this autonomous system can appear in an AS path. It defaults to 1. loops
should not be used in normal operations.

More detailed descriptions of these commands can be found on page 49 of the Command
Reference Guide.

8.3 Confed ID Syntax
 confed-id confederation_number ;

confed-id sets the confederation ID for this router to be confederation_number. confed-
id is required if this router will be using the BGP confederations option. Additionally,
autonomoussystem must also be defined.

The AS number of the confederation_number should be selected out of the reserved pri-
vate AS space, 64512-65534, as specified in RFC 1930, “Guidelines for Creation, Selection
and Registration of an Autonomous System.” Non-private ASs, however, can also be
selected.

More detailed descriptions of these commands can be found on page 51 of the Command
Reference Guide.
9/26/02 29

Definition Statements, GateD V.9.3.2
8.4 Router ID Syntax
 routerid host ;

routerid sets the router identifier for use by the BGP and OSPF protocols. routerid must
be explicitly configured when using BGP. The default is selected by going through the list of
interfaces and using the local address of the most preferred interface. The most preferred
interface is selected as follows: the address of a non-point-to-point interface is preferred
over the local address of a point-to-point interface, and an address on a loopback interface
that is not the loopback address (127.0.0.1) is most preferred.

More detailed descriptions of this command can be found on page 55 of the Command Ref-
erence Guide.

8.5 Martian Syntax
 martians {

 host [inet6] host [allow] ;

 network [(mask mask) | (masklen number)]

 [exact | refines | (between lower and upper)]

 [allow] ;

 [inet | inet6] default [allow] ;

 } ;
martians allows additions to the list of martian addresses. See the section, “Chapter 28
Route Filtering” on page 129 for more information on specifying ranges. Also, the allow
parameter may be specified to explicitly allow a subset of a range that was disallowed.

More detailed descriptions of these commands can be found on page 52 of the Command
Reference Guide.

Martians are networks that are considered illegal to be routed on the internet. RFC 1918
specifies these networks that are part of the private internet space:

• 10.0.0.0 - 10.255.255.255 (10/8 prefix)
• 172.16 - 172.31.255.255 (172.16/12 prefix)
• 192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

The prefixes are considered unroutable. GateD does not treat these as martian addresses,
but the martian syntax will allow you to treat private address space as illegal for routing
within an autonomous system. RFC 1700 specifies common usage for IP numbers.

The default martians are:

8.5.1 IPv4 Defaults
127/8 (127.0.0.0 netmask 255.0.0.0) - 127.x.x.x is specified by RFC 1700 to loop back
addresses. RFC 1700 (page 4, item g) states “these addresses should never appear outside
a host.” Address 127.0.0.1 is normally used as a loopback address.

240.0.0.0/4 (240.0.0.0 netmask 240.0.0.0) - 240.x.x.x are the multicast addresses.

8.5.2 IPv6 Defaults
::1/128 - IPv6 loopback address

fe80::/10 - IPv6 link local addresses
30 9/26/02

Configuring GateD, V.9.3.2
ff00::/8 - IPv6 multicast addresses

::0000: 127.0.0.0/104 and ::ffff: 127.0.0.0/104 - IPv6 embedded IPv4 loopback addresses

::0000: 240.0.0.0/100 and ::ffff 240.0.0.0/100 - IPv6 embedded IPv4 multicast addresses

8.6 Martian Examples
This example martian statement prevents routes to 10.0.0.26 from being accepted. It
also causes routes to 3ffd:ffff:ffff:1::/64 and any more specific subnets or hosts of this
route to not be accepted. It also prevents routes to 0.0.0.0/0 and ::/0 from being
accepted.

martians {

 10.0.0.26 ;

 3ffd:ffff:ffff:1::/64 ;

 default ;

} ;
9/26/02 31

Definition Statements, GateD V.9.3.2
32 9/26/02

Chapter 9
Multiple Routing Information Bases (RIBs)
9.1 Multiple RIBs Overview

GateD keeps multiple Routing Information Bases (RIBs) with active routes. Currently, two
RIBs per address family are available: unicast and multicast. Routes in the unicast RIB get
installed in the kernel forwarding information base (FIB) (because the UNIX kernel supports
only unicast routes in the FIB). The multicast RIB is used by multicast routing protocols to
construct multicast trees. Multicast routes are then installed in the kernel’s multicast for-
warding cache. Each route may be active in one or more RIBs simultaneously.

9.2 Direct (Interface) Routes
The direct route(s) for each multicast-capable interface apply to (are eligible to become
active in) the multicast RIB. The direct route(s) for each unicast-capable interface apply to
the unicast RIB. No additional configuration is needed to achieve this.

9.3 Static Routes
Static routes can be tagged with one or more RIB names. By default, a static route applies
only to the unicast RIB. (See “Chapter 19 Static Routes” on page 101 for more information
about static routes.)

Example:

 static {

 10.0.0.0 masklen 24 interface le1;

 10.0.1.0 masklen 24 interface le1 unicast;

 10.0.2.0 masklen 24 interface le1 multicast;

 10.0.3.0 masklen 24 interface le1 unicast multicast;

 };

The first two static routes apply only to the unicast RIB. The third applies only to the multi-
cast RIB, and the last applies to both.

9.4 Aggregate Routes
RIBs need not be specified for aggregate routes. (See “Chapter 33 Route Aggregation and
Generation” on page 155 for more information about aggregate routes.) By default, an
aggregate applies to all RIBs to which any contributing route applies. For example, an
aggregate applies to the unicast RIB if and only if any contributing route applies to the uni-
cast RIB.

Example:
9/26/02 33

Multiple Routing Information Bases (RIBs), GateD V.9.3.2
 aggregate 10.0.0.0 masklen 8 {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

 };

If any static route in the unicast RIB matches the route filter (which three of the four static
routes in the previous example do), the aggregate will exist in the unicast RIB. Likewise,
for the multicast RIB.

RIB limits may, however, be specified. By default, the limit is all RIBs (for example, all RIBs
to which any contributing route applies). This default can be overridden with a more spe-
cific limit, as in the example below.

 aggregate 10.0.0.0 masklen 8 unicast {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

 };

The above aggregate applies only to the unicast RIB and only if a contributing route is in
the unicast RIB. Contributing routes in other RIBs are ignored.

9.5 Importing Routes
Normally, routes from unicast routing protocols are imported only into the unicast RIB.
(See “Chapter 31 Route Importation” on page 137 for more information.) Routes from mul-
ticast routing protocols (for example, DVMRP) are imported only into the multicast RIB.
However, some multicast routing protocols do not maintain their own routing table.
Instead, they rely on the unicast routing protocol. To support these protocols, unicast
routes must be imported into the multicast RIB. If this is not done, only interface routes
and properly configured static or aggregate routes will be available to these multicast pro-
tocols.

Because BGP is able to tag routes as to which RIBs they apply, no additional configuration is
required for BGP routes. The RIP and Redirect protocols, however, do not do this. Hence,
GateD must be configured to import RIP or Redirect routes into the multicast RIB.

One or more RIB names can be specified as follows (where multicast and unicast appear
below):

 import proto (rip | redirect)

 [(interface interface_list) | (gateway gateway_list)]

 [preference preference] [multicast][unicast] {

 {route_filter [restrict | (preference preference)]

 [multicast] [unicast];

 };

If no RIBs are specified, the unicast RIB (only) is assumed.
34 9/26/02

Configuring GateD, V.9.3.2
Example 1

Example 1 keeps the normal behavior of allowing all RIP routes in the unicast RIB, but also
imports all routes falling under 198/8 into the multicast RIB.

 import proto rip {

 0.0.0.0 masklen 0 refines;

 198.0.0.0 masklen 8 refines multicast unicast;

 };

Example 2

Example 2 imports all RIP routes (except default) into the multicast RIB (as well as the
usual unicast RIB).

 import proto rip {

 0.0.0.0 masklen 0 refines multicast unicast;

 };

To import OSPF routes into the multicast RIB, you currently must import all OSPF routes as
follows:

 ospf yes {

 defaults {

 ribs unicast multicast;

 ...

 };

 ...

 };

You cannot import OSPF routes into only the multicast RIB. Attempting to do so will be
flagged as a configuration error.

9.6 gii
In gii, the show ip walkup and show ip walkdown commands have been expanded to
allow a RIB name as an additional optional argument. If no RIB is specified, the output cov-
ers all RIBs combined. Also, another column has been added to their output to show to
which RIBs a route applies (“u” for unicast, “m” for multicast).

Example 1

 GateD> sh ip walkdown 10.0.0.0/8
 100 um Agg 10/8 --- IGP (Id 1)
 100 u Sta 10/24 192.168.10.89 IGP (Id 1)
 100 u Sta 10.0.1/24 192.168.10.89 IGP (Id 1)
 100 m Sta 10.0.2/24 192.168.10.89 IGP (Id 1)
 100 um Sta 10.0.3/24 192.168.10.89 IGP (Id 1)
 GateD> sh ip walkdown 10.0.0.0/8 unicast
 100 u Agg 10/8 --- IGP (Id 1)
 100 u Sta 10/24 192.168.10.89 IGP (Id 1)
 100 u Sta 10.0.1/24 192.168.10.89 IGP (Id 1)
 100 u Sta 10.0.3/24 192.168.10.89 IGP (Id 1)
9/26/02 35

Multiple Routing Information Bases (RIBs), GateD V.9.3.2
 GateD> sh ip walkdown 10.0.0.0/8 m
 100 m Agg 10/8 --- IGP (Id 1)
 100 m Sta 10.0.2/24 192.168.10.89 IGP (Id 1)
 100 m Sta 10.0.3/24 192.168.10.89 IGP (Id 1)
 GateD>

See Chapter 7 of Operating GateD for more information about gii, the GateD Interactive
Interface.
36 9/26/02

Chapter 10
Configuration Initialization and Re-initialization
10.1 Overview

When GateD is started or re-initialized (with the HUP signal), it goes through the following
series of events.

10.2 Phase 1 - Initialization of Process
At startup or reinit time, GateD attempts to find the state of the kernel routing table and
the configuration of the machine's interfaces.

Note: In order to do the former, GateD must be running as root.

The process goes through the following sequence:

10.2.1 Reading the Kernel Routing Table
The reading of the kernel routing table is only done once to find the initial state of the
table. After it has been read, GateD listens for changes via the routing socket, kmem, or
ioctl interfaces. Which one GateD uses depends on the operating system. (See “Chapter 18
Kernel Interface” on page 95 for more information.)

10.2.2 Reading the Kernel Interface List
At startup and reinit time, as well as periodically during operation, GateD will scan the list
of interfaces. It does this using one of several methods, depending on the operating system.
Any time the interface list is scanned, the entire list is read and changes are reported to the
protocols individually.

10.3 Phase 2 - Initialization of Tasks
Each task has a callback hook associated with initialization, pre-parse initialization, and
policy initialization, and interface changes among other things. At startup, each protocol's
callback is called in this order:

1. var init - invokes the protocol’s var_init() procedure
2. parse - parses configuration file
3. init - initializes the protocol with parser information
4. reinit - invokes the task’s reinit procedure
5. if_notify - notifies tasks of changes of all physical and logical interfaces
6. reinit finalize - calls the task’s reinit_finalize procedures
7. new policy - configured policy is processed. The task’s newpolicy procedures are

invoked.
9/26/02 37

Configuration Initialization and Re-initialization, GateD V.9.3.2
Some protocols defer initialization of protocol interface structures until the first Interface
Change notification, and at that time, they are added or deleted according to the configu-
ration of the machine and the information in the config file. See “Chapter 9, Interacting
with GateD” of Operating GateD for more information about how GateD interacts with sys-
tem administration actions.

10.4 Phase 3 - Re-initialization of Tasks
GateD can be re-initialized while running without disturbing the operation of existing pro-
tocol sessions. Reconfiguration can enable instances of protocols that were previously dis-
abled and can disable protocols that are operating at the time of re-initialization. GateD
rereads its configuration file upon receiving a SIGHUP signal and processes the changes
between its current configuration and that represented in the new instance of the configu-
ration file.

Upon receipt of a SIGHUP signal, GateD calls each running task’s cleanup function to give
each task an indication that a re-initialization is taking place. A task’s cleanup routine
basically saves parts of its current configuration state and frees up other parts, such as
policy, that can safely be rebuilt without knowing its previous state. Then the seven initial-
ization steps listed above are performed again. As part of re-initialization, all routes are
run through both import and export policy again because the policy may have changed.
Routes that were imported before the re-initialization may no longer be importable under
the new policy, and routes that were unimportable under the old policy may now be
importable. The same holds true for the exportation of routes. A change to the importa-
tion of routes requires flashing the changes to GateD’s route table to all protocols.
38 9/26/02

Chapter 11
Routing Information Protocol (RIP)
11.1 Overview

One of the most widely used interior gateway protocols is the Routing Information Protocol
(RIP). RIP is an implementation of a distance-vector, or Bellman-Ford, algorithm. RIP classi-
fies routers as active and passive (silent). Active routers advertise their routes (reachability
information) to others; passive routers listen and update their routes based on advertise-
ments, but do not advertise. Typically, routers run RIP in active mode, while hosts use pas-
sive mode.

A router running RIP in active mode sends updates at set intervals. Each update contains
paired values, where each pair consists of an IP network address and an integer distance to
that network. RIP uses a hop count metric to measure the distance to a destination. In the
RIP metric, a router advertises directly connected networks at a metric of 1 by default. Net-
works that are reachable through one other gateway are 2 hops, etc. Thus, the number of
hops or hop count along a path from a given source to a given destination refers to the num-
ber of gateways that a datagram would encounter along that path. Using hop counts to cal-
culate shortest paths does not always produce optimal results. For example, a path with a
hop count 3 that crosses three Ethernets may be substantially faster than a path with a hop
count 2 that crosses two slow-speed serial lines. To compensate for differences in technol-
ogy, many routers advertise artificially high hop counts for slow links.

RIP dynamically builds on information received through RIP updates. When started up, RIP
issues a request for routing information and then listens for responses to the request. If a
system configured to supply RIP hears the request, it responds with a response packet based
on information in its routing database. The response packet contains destination network
addresses and the routing metric for each destination.

When a RIP response packet is received, the routing daemon takes the information and
rebuilds the routing database, adding new routes and “better” (lower metric) routes to des-
tinations already listed in the database. RIP also deletes routes from the database if the
next router to that destination reports that the route contains more than 15 hops, or if the
route is deleted. All routes through a gateway are deleted if no updates are received from
that gateway for a specified time period. In general, routing updates are issued every 30
seconds. In many implementations, if a gateway is not heard from for 180 seconds, all
routes from that gateway are deleted from the routing database. This 180-second interval
also applies to deletion of specific routes.

RIP version 2 (more commonly known as RIP II) adds additional capabilities to RIP. Some of
these capabilities are compatible with RIP I and some are not. To avoid supplying informa-
tion to RIP I routes that could be misinterpreted, RIP II can use only non-compatible fea-
9/26/02 39

Routing Information Protocol (RIP), GateD V.9.3.2
tures when its packets are multicast. On interfaces that are not capable of IP multicast,
RIP-I-compatible packets are used that do not contain potentially confusing information.

Some of the most notable RIP II enhancements are:

• Next hop
• Network mask
• Authentication
• RIP tag field

These features in RIP I and II are contrasted in the following paragraphs.

Next hop
With RIP II, a router can advertise a next hop other than itself. Next hop is useful when
advertising a static route to a dumb router that does not run RIP, because it avoids having
packets that are passed through the dumb router from having to cross a network twice.
Because RIP I routers will ignore next hop information in RIP II packets, packets might cross
a network twice, which is exactly what happens with RIP I. Next hop information is pro-
vided in RIP-I-compatible RIP II packets.

Network mask
RIP I assumes that all subnetworks of a given network are classful (Class A,B,C). RIP I uses
this assumption to calculate the network masks for all routes received. This assumption
prevents subnets with classless netmasks from being included in RIP packets. RIP II adds
the ability to specify the network mask with each network in a packet. Because RIP I rout-
ers will ignore the network mask in RIP II packets, their calculation of the network mask
will quite possibly be wrong. For this reason, RIP-I-compatible RIP II packets must not con-
tain networks that would be misinterpreted. These networks must be provided only in
native RIP II packets that are multicast.

RIP I derives the network mask of received networks and hosts from the network mask of
the interface via which the packet was received. If a received network or host is on the
same natural network as the interface over which it was received, and that network is sub-
netted (the specified mask is more or less specific than the natural netmask), the inter-
face’s subnet mask is applied to the destination. If bits outside the mask are set, it is
assumed to be a host; otherwise, it is assumed to be a subnet. On point-to-point inter-
faces, the netmask is applied to the remote address. The netmask on these interfaces is
ignored if it matches the natural network of the remote address, or is all ones. Unlike pre-
vious releases, the zero subnet (a subnetwork that matches the natural network of the
interface, but has a more specific, or longer, network mask) is advertised. If this is not
desirable, a route filter may be used to reject it.

Authentication
RIP II packets may contain one of two types of authentication strings that may be used to
verify the validity of the supplied routing data. Authentication may be used in RIP-I-com-
patible RIP II packets, but be aware that RIP I routers will ignore these packets (unless
nocheckzero is selected). The first method is a simple password in which an authentica-
tion key of up to 16 characters is included in the packet. If this key does not match what is
expected, the packet will be discarded. This method provides very little security because
it is possible to learn the authentication key by watching RIP packets.

The second method uses the MD5 algorithm to create a crypto-checksum of a RIP packet
and an authentication key of up to 16 characters. The transmitted packet does not contain
40 9/26/02

Configuring GateD, V.9.3.2
the authentication key itself; instead, it contains a crypto-checksum, called the “digest”.
The receiving router will perform a calculation using the correct authentication key and
discard the packet if the digest does not match. In addition, a sequence number is main-
tained to prevent the replay of older packets. This method provides a much stronger assur-
ance that routing data originated from a router with a valid authentication key.

Two authentication methods can be specified per interface. Packets are always sent using
the primary method, but received packets are checked with both the primary and second-
ary methods before being discarded. In addition, a separate authentication key is used for
non-router queries.

RIP tag field
RIP tags are supported by this implementation.

11.2 RIP Syntax
 rip (on | off) [{

 broadcast | nobroadcast ;

 ignorehostroutes ;

 expire-time expire_time ;

 update-time update_time ;

 nocheckzero ;

 preference preference ;

 defaultmetric metric ;

 query authentication none ;

 query authentication simple password ;

 query authentication md5 password ;

 query authentication md5 key password id number [{

 [start-accept YYYY/MM/DD HH:MM] ;

 [stop-accept YYYY/MM/DD HH:MM] ;

 [start-generate YYYY/MM/DD HH:MM] ;

 [stop-generate YYYY/MM/DD HH:MM] ;

 } ;]

 interface interface_list

 [noripin | ripin]

 [noripout | ripout]

 [metricin metric]

 [metricout metric]

 [version 1 | (version 2 [multicast | broadcast])]

 [secondary] authentication none ;

 [secondary] authentication simple password ;

 [secondary] authentication md5 password ;

 [secondary] authentication md5 key password id number [{

 [start-accept YYYY/MM/DD HH:MM] ;

 [stop-accept YYYY/MM/DD HH:MM] ;

 [start-generate YYYY/MM/DD HH:MM] ;

 [stop-generate YYYY/MM/DD HH:MM] ;

 } ;]

 ;

 trustedgateways gateway_list ;
9/26/02 41

Routing Information Protocol (RIP), GateD V.9.3.2
 sourcegateways gateway_list ;

 traceoptions trace_options ;

 }] ;

More detailed descriptions of these commands can be found on page 57 of the Command
Reference Guide. See “Chapter 32 Route Exportation” on page 145 for information about
exporting and RIP.

11.3 RIP Sample Configurations

11.3.1 RIP version 1 with Broadcast
This configuration broadcasts RIP updates and listens for RIP updates on a single interface.
Note that more than one interface must be enabled and IP forwarding must be enabled in
order to broadcast RIP updates by default. broadcast forces broadcast of RIP updates.

 rip yes {

 traceoptions all ;

 broadcast ;

 interface fxp0 ripin ripout ;

 interface fxp1 noripin noripout ;

 interface fxp2 noripin noripout ;

 };

11.3.2 RIP version 2 with Broadcast and Simple Authentication
This configuration broadcasts RIP updates and listens for RIP updates on a single interface.
Version 2 and simple authentication are used.

 rip yes {

 traceoptions all ;

 broadcast ;

 interface fxp0 ripin ripout version 2 authentication simple
"foo" ;

 interface 10.3.25.25 noripin noripout ;

 };

11.3.3 RIP version 2 with Multicast and Simple Authentication
This configuration enables version 2 multicast on two interfaces. Note that multicast is the
default if version 2 is specified.

 rip yes {

 traceoptions all ;

 interface fxp0 version 2 authentication simple "foo" ;

 interface fxp1 version 2 authentication simple "bar" ;

 };
42 9/26/02

Configuring GateD, V.9.3.2
11.3.4 RIP version 2 with Broadcast and MD5 Authentication
This configuration enables a single interface for version 2 RIP with an MD5 authentication
key. By default, the key has an infinite lifetime.

 rip yes {

 traceoptions all;

 broadcast ;

 interface fxp0 version 2 authentication md5 key “foo” id 20;

 };

11.3.5 RIP version 2 with Source and Trusted Gateways
This configuration uses sourcegateways and trustedgateways to enable GateD to
announce RIP to a single gateway and receive RIP from a single gateway.

 rip yes {

 traceoptions all ;

 nobroadcast ;

 sourcegateways 10.131.10.12 ;

 trustedgateways 10.131.10.12 ;

 interface 10.131.10.16 version 2 authentication simple "foo";

 };
9/26/02 43

Routing Information Protocol (RIP), GateD V.9.3.2
44 9/26/02

Chapter 12
Open Shortest Path First (OSPF)
12.1 OSPF Overview

Open Shortest Path First Routing (OSPF) is a shortest path first or link-state protocol. OSPF
is an interior gateway protocol that distributes routing information between routers in a sin-
gle autonomous system (AS). OSPF chooses the least-cost path as the best path. OSPF is suit-
able for complex networks with a large number of routers because it provides equal-cost
multi-path routing, where packets to a single destination can be sent via more than one
interface simultaneously.

In a link-state protocol, each router maintains a database describing the entire AS topology,
which it builds out of the collected link state advertisements of all routers. Each participat-
ing router distributes its local state (i.e., the router’s usable interfaces and reachable
neighbors) throughout the AS by flooding. Each multi-access network that has at least two
attached routers has a designated router and a backup designated router. The designated
router floods a link state advertisement for the multi-access network and has other special
responsibilities. The designated router concept reduces the number of adjacencies required
on a multi-access network.

OSPF allows networks to be grouped into areas. Routing information passed between areas
is abstracted, potentially allowing a significant reduction in routing traffic. OSPF uses the
following four different types of routes, listed in order of preference: intra-area, inter-
area, type 1 Autonomous System External (ASE), and type 2 ASE. Intra-area paths have des-
tinations within the same area. Inter-area paths have destinations in other OSPF areas. Both
types of ASE routes are routes to destinations external to OSPF (and usually external to the
AS). Routes exported into OSPF ASE as type 1 ASE routes (see “Exporting to OSPF ASE and
NSSA” on page 151) are supposed to be from interior gateway protocols (such as RIP) whose
external metrics are directly comparable to OSPF metrics. When a routing decision is being
made, OSPF will add the internal cost to the AS border router to the external metric. Type 2
ASEs are used for exterior gateway protocols whose metrics are not comparable to OSPF
metrics. In this case, only the internal OSPF cost to the AS border router is used in the rout-
ing decision.

From the topology database, each router constructs a tree of the shortest paths, with itself
as the root. This shortest-path tree gives the route to each destination in the AS. Externally-
derived routing information appears on the tree as leaves. The link-state advertisement for-
mat distinguishes between information acquired from external sources and information
acquired from internal routers, so there is no ambiguity about the source or reliability of
routes. Externally-derived routing information (for example, routes learned from BGP) is
passed transparently through the AS and is kept separate from OSPF’s internally derived
9/26/02 45

Open Shortest Path First (OSPF), GateD V.9.3.2
data. Each external route can also be tagged by the advertising router, enabling routers on
the borders of the AS to pass additional information between them.

OSPF optionally includes Type of Service (TOS) routing and allows administrators to install
multiple routes to a given destination for each type of services, such as low delay or high
throughput. A router running OSPF uses the destination address and the type of service to
choose the best route to the destination.

OSPF intra- and inter-area routes are always imported into the GateD routing database
with a preference of 10. Because it would violate the protocol if an OSPF router did not
participate fully in the area’s OSPF, it is not possible to override this preference. Although
it is possible to give other routes better preference values explicitly, doing so would vio-
late the OSPF protocol and could lead to incorrect routing. Therefore, you cannot specify
import or export policy for OSPF; you can only specify export policy for OSPF ASE.

Hardware multicast capabilities are also used where possible to deliver link-status mes-
sages. OSPF areas are connected by the backbone area, the area with identifier 0.0.0.0.
All areas must be logically contiguous, and the backbone is no exception. To permit maxi-
mum flexibility, OSPF allows the configuration of virtual links, which enables the backbone
area to appear contiguous despite the physical reality.

Because a separate copy of the link-state algorithm is run for each area, most configura-
tion parameters are defined on a per-area basis. All routers in an area must agree on that
area’s parameters. Misconfiguration will keep neighbors from forming adjacencies between
themselves, and routing information might not flow or could loop.

GateD can run over a variety of physical connections: serial connections, LAN interfaces,
ATM, or FDDI. The OSPF configuration supports three different types of connections in the
interface clauses:

LAN and Point-to-Point

An example of a LAN interface is an Ethernet or a FDDI interface. A point-to-point inter-
face can be a serial line using Point-to-Point protocol. GateD will use a Multicast IP address
on LAN interfaces to reach OSPF routers.

Non-Broadcast Multiple Access

ATM with virtual circuits is an example of a Non-Broadcast Multiple Access medium.
Because there is no general multicast in all ATM devices, each router must be listed so that
GateD can poll each router. GateD will unicast the packets to the routers in the NBMA net-
work.

Point-to-Multipoint

Point-to-Multipoint connectivity is used when the network does not provide full connectiv-
ity to all routers in the network. Just as on the NBMA format, you must provide a list of
routers that the GateD deamon will query as OSPF peers.

12.2 OSPF Syntax
 ospf on | off [{

 always-update-summary on | off ;

 retransmitinterval global_default_time ;
46 9/26/02

Configuring GateD, V.9.3.2
 transitdelay global_default_time ;

 priority global_default_priority ;

 hellointerval global_time ;

 routerdeadinterval global_default_time ;

 pollinterval global_default_time ;

 advertise-subnet on | off ;

 opaque-capability on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 defaults {

 preference defasepref ;

 cost defasecost ;

 tag [as] tagvalue ;

 type 1 | 2 ;

 inherit-metric ;

 ribs unicast [multicast] ;

 nssa-preference defnssapref ;

 nssa-cost defnssacost ;

 nssa-type 1 | 2 ;

 nssa-inherit-metric ;

 };

 traceoptions trace_options_ospf ;

 rfc1583compatibility on | off ;

 area areanumber | backbone {

 nssa [cost defaultcost type 1 | 2] ;

 nssanetworks {

 network mask stubmask [restrict] ;

 network masklen number [restrict] ;

 host stubhost [restrict] ;

 };

 stub [cost stub_default_cost] ;

 stubhosts {

 host cost cost ;

 };

 stubnetworks {

 network mask stubmask cost cost ;

 network masklen number cost cost ;

 host stubhost cost cost ;

 };
9/26/02 47

Open Shortest Path First (OSPF), GateD V.9.3.2
 networks {

 network [restrict] ;

 network mask netmask [restrict] ;

 network masklen number [restrict] ;

 host nethost [restrict] ;

 } ;

 summaryfilters {

 route_filter

 } ;

 retransmitinterval area_default_time ;

 transitdelay area_default_time ;

 priority area_default_priority ;

 hellointerval area_time ;

 routerdeadinterval area_default_time ;

 pollinterval area_default_time ;

 advertise-subnet on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 interface interface_list

 [cost ifcost]

 [{ enable | disable ;

 retransmitinterval iftime ;

 transitdelay iftime ;

 priority ifpriority ;

 hellointerval if_time ;

 routerdeadinterval iftime ;

 pollinterval iftime ;

 passive ;

 advertise-subnet on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 }] ;

 interface interface_name | interface_address nonbroadcast

 [cost ifnbcost]

 [{ strict-routers on | off ;

 routers {

 gatewaylist [eligible] ;

 } ;

 retransmitinterval ifnbtime ;

 transitdelay ifnbtime ;
48 9/30/02

Configuring GateD, V.9.3.2
 priority ifnbpriority ;

 hellointerval ifnb_time ;

 routerdeadinterval ifnbtime ;

 pollinterval ifnbtime ;

 passive ;

 advertise-subnet on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 }] ;

 interface interface_name | interface_address point-to-multipoint

 [cost ptmcost]

 [{ strict-routers on | off ;

 routers {

 gatewaylist ;

 } ;

 retransmitinterval ptmtime ;

 transitdelay ptmtime ;

 priority ptmpriority ;

 hellointerval ptmtime ;

 routerdeadinterval ptmtime ;

 pollinterval ptmtime ;

 passive ;

 advertise-subnet on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 }] ;

 Backbone only:

 virtuallink neighborid router_id

 transitarea area [{

 retransmitinterval vl_time ;

 transitdelay vl_time ;

 priority vl_priority ;

 hellointerval vl_time ;

 routerdeadinterval vl_time ;

 pollinterval vl_time ;

 passive ;

 advertise-subnet on | off ;

 auth [none | simple auth_key | md5 md5-keyset] ;

 }] ;

 } ;
9/26/02 49

Open Shortest Path First (OSPF), GateD V.9.3.2
 }] ;

More detailed descriptions of these commands can be found on page 95 of the Command
Reference Guide. See “Exporting to OSPF ASE and NSSA” on page 151 for information about
exporting and OSPF.

12.3 OSPF Sample Configurations

12.3.1 Example 1, Host Configuration

The simplest configuration for a host user is the following, which will set GateD into the
backbone area specified for all interfaces. The GateD OSPF has defaults for a host that will
not allow it to become a designated router (DR) for OSPF.
 ospf yes;

The simplest configuration for a host user in an area outside the backbone is:
 ospf yes {

 area 0.0.0.2; {

 interface all;

 };

 };

12.3.2 Example 2, Router Configurations
The same simplest configurations can also be used for UNIX system running as a router. The
following configuration is for a router in the backbone.

 ospf yes {

 priority 1;

 backbone {

 interface all;

 };

 };

The following gives the same configuration as above.

 ospf yes { priority 1; };

The following configuration is for a router in area 0.0.0.2.

 ospf yes {

 priority 1;

 area 0.0.0.2 {

 interface all;

 };

 };
50 9/26/02

Configuring GateD, V.9.3.2
The following configuration is for a simple border router.

 ospf yes {

 priority 1;

 backbone {

 interface fxp0;

 };

 area 0.0.0.1 {

 interface fxp1;

 };

 };

Use area ranges to reduce the amount of routing information in the OSPF domain. In this
example, area 0.0.0.1 is the only area with 192.168.x/24 networks in it. By specifying a
network range, only a single LSA is announced to the backbone (and thus to other areas)
advertising the larger 192.168/16 route. The following configuration is for a border router
with summarizing area range.

 ospf yes {

 priority 1;

 backbone {

 interface fxp0;

 };

 area 0.0.0.1 {

 networks {

 192.168 masklen 16;

 };

 interface fxp1;

 };

 };

To reduce the amount of routing information in a single area, make it a stub area. Stub
areas do not receive LSAs for external routes being readvertised in OSPF. Normally, you
would also originate a default summary route into the area, so that internal routers have a
route to networks outside of the area. The following configuration is for a border router
attaching to a stub area and injecting a default route.

 ospf yes {

 priority 1;

 backbone {

 interface fxp0;

 };
9/26/02 51

Open Shortest Path First (OSPF), GateD V.9.3.2
 area 0.0.0.1 {

 stub cost 1;

 interface fxp1;

 };

 };

To further reduce the amount of routing information, when using stub areas, you can filter
all (or some subset) of the summary (except the generated default). Be sure to specify the
cost 1 part of the stub statement so that a default route is generated for the routers in
the stub area. The following configuration is for a border router attaching to stub area,
injecting a default route and filtering all summary.

 ospf yes {

 priority 1;

 backbone {

 interface fxp0;

 };

 area 0.0.0.1 {

 stub cost 1;

 summary-filters { all; };

 interface fxp1;

 };

 };

12.4 Authentication
By definition, all OSPF protocol exchanges are authenticated; however, one method of
authentication is none. Authentication can help to guarantee that routing information is
imported only from trusted routers. A variety of authentication schemes can be used, but a
single scheme must be configured for each network. The use of different schemes enables
some interfaces to use much stricter authentication than others. The three authentication
schemes available are: none, simple, and MD5.

No Authentication

When no authentication is required, use authentication type none. To use authentication
type none, add the following line to the appropriate OSPF interface statements.
 auth none ;

Simple Authentication Key

When you want to keep certain routers from exchanging OSPF packets, use the simple form
of authentication. The interfaces that the packets are to be sent on still need to be
trusted, because the key will be placed in the packets and can be seen by anyone with
access to the network. To specify authentication type simple, add the following line to
your OSPF interface statements:
52 9/26/02

Configuring GateD, V.9.3.2
 auth simple “auth-key”

where auth-key is a quoted string of up to eight characters.

MD5 Authentication

When you do not trust other users of your network, use MD5 authentication. The system
works by using shared secret keys. Because the keys are used to sign the packets with an
MD5 checksum, they cannot be forged or tampered with. Because the keys are not
included in the packet, snooping the key is not possible. Users of the network can still
snoop the contents of packets, however, because the packets are not encrypted.

GateD's MD5 authentication is compliant with the specification in OSPF RFC 2328. This
specification uses the MD5 algorithm and an authentication key of up to 16 characters. RFC
2328 allows multiple MD5 keys per interface. Each key has two associated time ranges.

To specify a single MD5 key on an interface, add the following to the appropriate OSPF
interface statements:
 auth md5 md5-keyset

where md5-keyset is:
 key auth-key id id-number [{

 [start-generate date-time;]

 [stop-generate date-time;]

 [start-accept date-time;]

 [stop-accept date-time;]

 }];

where auth-key is a 1- to 16-character string in double quotes, id-number is an integer
between 1 and 255, and date-time is in the format YYYY/MM/DD HH:MM. (If any time
fields are used, all are required.)

If no value is given for the time ranges, the default values are:
• key is always generated
• key is always accepted

Thus, if you always want your key to be accepted, simply specify a sequence such as:
 auth md5 key "mykeyone" id 1;

To specify multiple MD5 keys on an interface, add the following to the appropriate OSPF
interface statements:

 auth md5 {

 md5-key

 md5-key

 .

 .

 .

 md5-key

 } ;
9/26/02 53

Open Shortest Path First (OSPF), GateD V.9.3.2
where md5-key is as specified above.

For example, two routers may start out generating key 1 and want to switch to key 2 at
6:00 GMT. In order to make the transition between keys easier, the routers agree to stop
generating key 1 at 6:00 GMT but accept key 1 until 6:10 GMT. Key 2 is accepted ten min-
utes before the planned switch time (i.e., 5:50 GMT). These overlapping ranges allow the
clocks on the routers to be slightly out of sync. This sequence of keys would be specified
by:

 auth md5 {

 key "mykeyone" id 1 {

 stop-generate 2001/05/01 06:00;

 stop-accept 2001/05/01 06:10;

 };

 key "mykeytwo" id 2 {

 start-generate 2001/05/01 06:00;

 start-accept 2001/05/01 05:50;

 };

 };
54 9/26/02

Chapter 13
Intermediate System to Intermediate System (IS-IS)
13.1 Overview

IS-IS is a link state interior gateway protocol (IGP), or Intra-Domain Routing Protocol, origi-
nally developed for routing International Organization for Standardization/Connectionless
Network Protocol (ISO/CLNP) packets. The version distributed with GateD routes IP packets.

In ISO terminology, a router is referred to as an “intermediate system” (IS). IS-IS intra-
domain routing is organized hierarchically so that a large domain can be administratively
divided into smaller areas. These areas route using Level 1 intermediate systems within
areas and Level 2 intermediate systems between areas. Routing between administrative
domains is handled by Border Intermediate Systems (BISs) using IDRP, the Inter-Domain
Routing Protocol. Level 1 systems route directly to systems within their own area. Level 1
systems route toward a Level 2 intermediate system when the destination system is in a dif-
ferent area. Level 2 intermediate systems route between areas and keep track of the paths
to destination areas. Systems in the Level 2 subdomain route toward a destination area or
another routing domain.

As with any Internet routing protocol, IS-IS support for large routing domains can also
include support for many types of individual subnetworks. These subnetworks can include
point-to-point links, multipoint links, and dynamically established data links as in X.25 sub-
networks and broadcast subnetworks like ISO 8802 LANs. In IS-IS, all subnetwork types are
treated by the subnetwork independent functions as though they were connectionless sub-
networks using subnetwork convergence functions where necessary.

Like OSPF, IS-IS uses a “shortest-path first” algorithm to determine routes. A congestion
control component monitors and prevents buffer deadlock at each intermediate system.
GateD configuration syntax allows as much autoconfiguration as possible, thus reducing the
probability of error. GateD configuration syntax also allows a policy to be specified for
exchanging routing information with other protocols running in GateD, such as BGP and RIP.
The IS-IS protocol supports multipath (load-split) forwarding. IS-IS also supports full injec-
tion of exterior network prefixes and attribute information, thus eliminating the need for
any internal BGP or similar protocols. IS-IS supports static routing domain information at
Level 2 intermediate systems.

The reachable address prefix indicates that any Network Service Access Points (NSAPs) that
match the prefix can be reachable via the Subnet Point of Attachment (SNPA) with which
the prefix is associated. Where the subnetwork to which this SNPA is connected is a general
topology subnetwork supporting dynamically established data links, the prefix also has asso-
ciated with it the required subnetwork addressing information, or an indication that it can
be derived from the destination NSAP address. The address prefixes are handled by the
9/26/02 55

Intermediate System to Intermediate System (IS-IS), GateD V.9.3.2
Level 2 routing algorithm in the same way that information about Level 1 is handled within
the domain.

An API for the origination of Traffic Engineering (TE) information is available in this
release. For more information on this API (and TE support in GateD), see the IS-IS TE API
document. The extended metrics (larger than 63) are originated using the extended-
metrics keyword, which defaults to off.

The ISIS implementation in GateD requires either access to the physical layer (e.g. Ether-
net) or an ISO stack in order to send and receive packets. PDU (Protocol Data Units) in ISIS
are sent directly over the physical layer using 802.2 LLC encapsulation. The supported
operating systems with ISIS in this release are NetBSD, BSD/OS, and Linux 2.4. These sys-
tems allow either access to an AF_ISO socket or direct access to the physical layer through
a PF_PACKET socket.

13.2 IS-IS Syntax

 isis (on | off) {

 [area D.D.D.D | HH.HHHH.HHHH.HHHH.HHHH.HHHH ;]

 area auth simple key ;

 area auth md5 key key ;

 area auth {

 [simple key ;]

 [md5 key key ;]

 [md5 key key {

 [start-accept YYYY/MM/DD HH:MM [.ss] ;]

 [stop-accept YYYY/MM/DD HH:MM [.ss] ;]

 [start-generate YYYY/MM/DD HH:MM [.ss] ;]

 [stop-generate YYYY/MM/DD HH:MM [.ss] ;]

 } ;]

 } ;

 domain auth simple key ;

 domain auth md5 key key ;

 domain auth {

 [simple key ;]

 [md5 key key ;]

 [md5 key key {

 [start-accept YYYY/MM/DD HH:MM [.ss] ;]

 [stop-accept YYYY/MM/DD HH:MM [.ss] ;]

 [start-generate YYYY/MM/DD HH:MM [.ss] ;]

 [stop-generate YYYY/MM/DD HH:MM [.ss] ;]

 } ;]
56 9/26/02

Configuring GateD, V.9.3.2
 } ;

 [domain-wide (on | off) ;]

 [export-defaults metric-type (internal | external);]

 [export-defaults metric (metricnum | inherit);]

 [export-defaults level (1 | 2);]

 [extended-metrics (on | off) ;]

 [rfc1195-metrics (on | off) ;]

 [external preference preferencenum ;]

 [hostname “name” ;]

 [inet (on | off) ;]

 [inet6 (on | off) ;]

 [interface interface_name [{

 [(enable | disable) ;]

 auth simple key [level (1 | 2 | 1 and 2)] ;

 auth md5 key key ;

 auth {

 [simple key ;]

 [md5 key key ;]

 [md5 key key {

 [start-accept YYYY/MM/DD HH:MM [.ss] ;]

 [stop-accept YYYY/MM/DD HH:MM [.ss] ;]

 [start-generate YYYY/MM/DD HH:MM [.ss] ;]

 [stop-generate YYYY/MM/DD HH:MM [.ss] ;]

 };]

 [level (1 | 2 | 1 and 2) ;]

 }

 [csn-interval intervalnum [level (1 | 2 | 1 and 2)] ;]

 [dis-hello-interval intervalnum [level (1 | 2 | 1 and 2)]

 ;]

 [hello-interval intervalnum [level (1 | 2 | 1 and 2)] ;]

 [hello-multiplier multipliernum [level (1 | 2 | 1 and 2)]

 ;]

 [lsp-interval msintervalnum ;]

 [level (1 | 2 | 1 and 2) ;]

 [max-burst burstnum ;]

 [mesh-blocked ;]

 [mesh-group meshnum ;]

 [metric metricnum [level (1 | 2 | 1 and 2)] ;]
9/26/02 57

Intermediate System to Intermediate System (IS-IS), GateD V.9.3.2
 [passive (on | off) ;]

 [periodic-csn (on | off) ;]

 [priority prioritynum [level (1 | 2 | 1 and 2)] ;]

 [retransmit-interval intervalnum ;]

 }] ;]

 [level (1 | 2 | 1 and 2) ;]

 [overload-bit (on | off) ;]

 [preference preferencenum ;]

 [psn-interval intervalnum ;]

 [require-snp-auth (on | off) ;]

 [ribs (unicast | unicast multicast) ;]

 [spf-interval intervalnum ;]

 [summary-originate [inet] {

 [ipv4-network mask ipv4-netmask metric cost-value ;]

 [ipv4-network masklen ipv4-masklen metric cost-value ;]

 } ;]

 [summary-filter [inet] {

 [ipv4-network mask ipv4-netmask ;]

 [ipv4-network masklen ipv4-masklen ;]

 } ;]

 [summary-originate inet6 {

 [ipv6-network mask ipv6-netmask metric cost-value ;]

 [ipv6-network masklen ipv6-masklen metric cost-value ;]

 } ;]

 [summary-filter inet6 {

 [ipv6-network mask ipv6-netmask ;]

 [ipv6-network masklen ipv6-masklen ;]

 } ;]

 [systemid (D.D.D.D | HHHH.HHHH.HHHH) ;]

 [traceoptions isis_traceoptions ;]

 OSI-specific:

 [config-time seconds ;]

 [es-config-time seconds ;]

 [hold-time seconds ;]

 } ;

Notes:

• The interface level is restricted by the global level.
58 9/26/02

Configuring GateD, V.9.3.2
• IPv6 related options (inet6 for example) will fail to parse unless IPv6 is supported in
the code base and underlying operating system.

• ISO is the only supported encapsulation type.
• IS-IS extended reachability TLV's may be originated using extended-metrics on.

This option must be used if metrics larger than 63 are to be configured.

See page 151 of the Command Reference Guide for specific information about each com-
mand.

13.3 IS-IS Defaults
 isis off {

 config-time 60;

 es-config-time 60;

 export-defaults metric-type internal;

 export defaults metric inherit;

 export defaults level 2;

 extended-metrics off;

 rfc1195-metrics on;

 external preference 151;

 hold-time 120;

 inet on;

 inet6 off;

 interface all {

 enable;

 csn-interval 10 level 1 and 2;

 dis-hello-interval 3 level 1 and 2;

 hello-interval 10 level 1 and 2;

 hello-multiplier 3 level 1 and 2;

 level 1 and 2;

 lsp-interval 33;

 max-burst 5;

 metric 10 level 1 and 2;

 periodic-csn off;

 priority 64 level 1 and 2;

 retransmit-interval 5;

 };

 level 1 and 2;

 overload-bit off;

 preference 11;
9/26/02 59

Intermediate System to Intermediate System (IS-IS), GateD V.9.3.2
 psn-interval 2;

 require-snp-auth off;

 ribs unicast;

 spf-interval 2;

 traceoptions none;

 }

13.4 IS-IS Sample Configurations

Example 1

Export all static routes into level 2 external reachability.

 export proto isis metric-type external level 2 {

 proto static {

 all ;

 } ;

 } ;

Example 2

Export all IS-IS external routes into OSPF ASE with metric 2 type 1.

 export proto ospfase type 1 metric 2 {

 proto isis external {

 all ;

 } ;

 } ;
60 9/26/02

Chapter 14
Border Gateway Protocol (BGP)
14.1 BGP Overview

The Border Gateway Protocol (BGP) is an exterior, or inter-domain, routing protocol used for
exchanging routing information between autonomous systems. BGP is used to exchange
routing information between multiple transit autonomous systems as well as between tran-
sit and stub autonomous systems. BGP uses path attributes to provide more information
about each route and in particular to maintain an autonomous system (AS) path. An AS path
includes the AS number of each autonomous system that the route has transited, which pro-
vides information sufficient to prevent routing loops in an arbitrary topology. Path
attributes may also be used to distinguish between groups of routes to determine adminis-
trative preferences, allowing greater flexibility in determining route preference to achieve
a variety of administrative ends. GateD supports version 4 of the BGP protocol.

BGP supports two basic types of sessions between neighbors: internal (sometimes referred
to as IBGP) and external (EBGP). Internal sessions are run between routers in the same
autonomous system. External sessions run between routers in different autonomous sys-
tems. When an AS sends routes to an external peer, the local AS number is prepended to the
AS path. This means that routes received from an external peer are guaranteed to have the
AS number of that peer at the start of the path. In general, routes received from an internal
neighbor will not have the local AS number prepended to the AS path. Those routes will
have the same AS path that the route had when the originating internal neighbor received
the route from an external peer. Routes with no AS numbers in the path may be legitimately
received from internal neighbors. These routes should be considered internal to the
receiver's own AS.

External BGP sessions may or may not include a single metric, which BGP calls the Multi-Exit
Discriminator (MED) among the path attributes. MED is a 32-bit unsigned integer. Smaller
values of the MED are preferred. This metric is used only to break ties between routes with
equal preference from the same neighboring AS.

Internal BGP sessions carry at least one metric in the path attributes, which BGP calls the
Local_Pref. A route is preferred if its value for this metric is larger. Internal sessions may
optionally include a second metric, the MED, carried in from external sessions. The use of
these metrics is dependent on the type of internal protocol processing that is specified.

BGP collapses as many routes with similar path attributes as it can into a single update for
advertisement. It also sends another update once the maximum packet size is reached. The
churn caused by the loss of a neighbor will be minimized, and the initial advertisement sent
during peer establishment will be maximally compressed. BGP does not read information
from the kernel message by message, but fills the input buffer. BGP processes all complete
messages in the buffer before reading again. BGP also does multiple reads to clear all
9/26/02 61

Border Gateway Protocol (BGP), GateD V.9.3.2
incoming data queued on the socket. This feature may cause other protocols to be blocked
for prolonged intervals by a busy peer connection. All unreachable messages are collected
into a single message and sent prior to reachable routes during a flash update. Another
update is sent once the maximum packet size is reached.

Two internal routing groups exist: group type internal and group type routing. The
group type internal expects all peers to be directly attached to a shared subnet so
that, like external peers, the next hops received in BGP advertisements may be used
directly for forwarding. But group type routing will determine the immediate next hops
for routes by using the next hop received with a route from a peer, and using this next hop
to look up an immediate next hop in an IGP’s routes. Such groups support distant peers but
need to be informed of the IGP whose routes they are using to determine immediate next
hops.

For group type internal BGP, where possible, a single outgoing message is built for all
group peers based on the common policy. A copy of the message is sent to every peer in
the group. The copy includes possible adjustments to the next-hop field as appropriate to
each peer. Another update is sent once the maximum packet size is reached. This process
minimizes the computational load of running large numbers of peers in these types of
groups.

BGP allows unconfigured peers to connect if an appropriate group has been configured
with an allow clause.

14.2 BGP Syntax
 bgp (on | off)

 {

 [clusterid host-id ;]

 [defaultmetric metric ;]

 [discard-nonprefixed-confederations |

 ignore-nonprefixed-confederations]

 [open-on-accept ;]

 [preference bgppreference ;]

 [traceoptions trace_options ;]

 group type

 (external peeras autonomoussystem

 | internal peeras autonomoussystem

 | routing peeras autonomoussystem proto protocol)

 [ascount count] # external only

 [comm community_values]

 [confed]

 [gateway host]

 [holdtime time]

 [ignorefirstashop] # external only

 [keep (all | none)]
62 9/26/02

Configuring GateD, V.9.3.2
 [keepalivesalways]

 [localtcp local_address]

 [localas autonomous_system] # external only

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself] # external only

 [no-mp-nexthop]

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time] # external only

 [passive]

 [preference grouppreference]

 [preference2 grouppreference2]

 [recvbuffer buffer_size]

 [reflector-client [no-client-reflect]]

 # internal and routing types only

 [routetopeer]

 [sendbuffer buffer_size]

 [setpref metric] # internal and routing types only

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl] # routing only

 {

 #

 # There can be zero or one

 # "allow" clauses within a peer group.

 #

 allow {

 all ;

 | host ipnumber ;

 | classful network ;

 | network mask mask ;

 | network masklen number ;

 | network ‘/’ number ;

 } ;

 #
9/26/02 63

Border Gateway Protocol (BGP), GateD V.9.3.2
 # There can be zero or more

 # "peer" clauses within a peer group.

 #

 peer host

 [ascount count]

 [gateway host]

 [holdtime time]

 [ignorefirstashop]

 [keep (all | none)]

 [keepalivesalways]

 [localtcp local_address]

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself]

 [no-mp-nexthop]

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time]

 [passive]

 [preference peerpreference]

 [preference2 peerpreference2]

 [recvbuffer buffer_size]

 [reflector-client [no-client-reflect]]

 [routetopeer]

 [sendbuffer buffer_size]

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl]

 ;

 #

 # There should be at least one "allow" or "peer" clause

 # within a "group type" statement.

 #

 } ;

 } ;
64 9/26/02

Configuring GateD, V.9.3.2
Notes:

1. You must specify the Autonomous System and Router ID at the top of your configu-
ration file in order for BGP to work.

2. One or more group type clauses must appear within the bgp statement. The group
type clause is used to create peer groups that share common attributes.

3. Within the group type statement, the allow and/or peer clauses are used to spec-
ify the peers that are in the group.

4. The allow clause allows peering sessions to be established by hosts within one or
more networks. The allow clause should appear at most only once within a peering
group.

5. The peer clause is used to individually specify peers and to permit overriding spe-
cific peering group options.

6. The peer clause can appear multiple times within a peering group.

More detailed descriptions of these commands can be found on page 225 of the Command
Reference Guide. See “Examples of Importation into Multicast RIBs” on page 142 for more
information about importing and BGP. See “Exporting to BGP” on page 149 for more infor-
mation about exporting and BGP.

14.3 Extended BGP-4 Features
The following features are provided in extended BGP-4:

• AS Path prepend - GateD allows the prepending of Autonomous Systems.
• Route reflection (RFC 2796) - Route Reflection is supported for reduction of large

internal peer groups. See “Route Reflection Overview and Examples” on page 71.
• BGP Route Flap Damping (RFC 2439) - GateD supports the varied parameters on

Route Flap Damping.
• Community Support (RFC 1997) - GateD allows for filtering of routes based on com-

munities on import. In exporting routes, GateD allows the communities to be added
or deleted. See “Communities Overview and Examples” on page 77.

• BGP Confederations (RFC 3065) - BGP Confederations allows multiple internal ASs to
be used for scaling large networks. This confederation is represented as a single
external AS.

14.4 Route Selection
BGP selects the best path to an AS from all the known paths and propagates the selected
path to its neighbors.

14.5 Cisco® Interoperability
GateD configuration differs greatly from Cisco® routers. This section compares the follow-
ing:

• BGP route selection
• Local_Pref configuration
• MED configuration
• import and export policy configuration
9/26/02 65

Border Gateway Protocol (BGP), GateD V.9.3.2
14.5.1 Cisco® vs. GateD Route Selection
The following table compares Cisco® 11.0/12.0 and GateD bgp-4-16 draft route selection
policy:

Cisco® (11.0/12.0) GateD (bgp-4-16 draft)

Active Route - If the next
hop is inaccessible, do not
consider it.

Active Route - If GateD can-
not install a route in the
kernel, GateD will not con-
sider it (select the route as
the active route).

Configured Policy - Con-
sider larger BGP administra-
tive weights first.

Configured Policy - Con-
sider the route with small-
est preference, as
determined by the policy
defined in gated.conf. Ties
are broken by the
preference2 with the low-
est values.

Local_Pref - If the routes
have the same weight, con-
sider the route with higher
local preference.

Local_Pref - If the BGP Pref-
erences match (prefer-
ence and preference2),
prefer the route with the
highest BGP local prefer-
ence.

Local Router - If the routes
have the same local prefer-
ence, prefer the route that
the local router originated.

Shortest AS Path - If no
route is originated, prefer
the shorter AS path.

Shortest AS Path - If the
routes have the same BGP
local preference, prefer the
route with the fewest
Autonomous Systems listed
in its AS path.

IGP < EGP < Incomplete - If
all routes have paths with
the same AS path length,
prefer the lowest origin
code (IGP < EGP < Incom-
plete).

Origin IGP < EGP < Incom-
plete - If routes have the
same AS path length, prefer
the lowest origin code. Next
in preference is the route
with AS path origin of EGP.
Least preferred is an AS
path that is incomplete.
66 9/26/02

Configuring GateD, V.9.3.2
14.6 Local_Pref Configuration Example
The following configurations set a Local_Pref of 120 for peers in AS 200. Note that
GateD’s configuration uses the setpref command. The Local_Pref value comes from this
equation: Local_Pref = 254 - (global protocol preference for this route) +
metric. The global protocol preference for BGP is 170. (See “Assigning Preferences” on
page 11.) In this example, we use the syntax setpref 36 to specify a Local_Pref value of
120 (254-170+36 = 120) for BGP routes.

MED - If origin codes are the
same and all the paths are
from the same Autonomous
System, prefer the path
with the lowest Multi Exit
Discriminator (MED) metric.
A missing metric is treated
as zero.

MED (if not ignored) - If ori-
gin codes are the same, pre-
fer the highest (worst)
Multi-Exit Discriminator.
MEDs are only compared
between routes that were
received from the same
neighbor AS. This test is
applied only if the local AS
has two or more connec-
tions to a given neighbor AS.
A missing metric is treated
as the best (lowest) MED.
MED comparison must be
enabled; it is disabled by
default.

External/Internal - If the
MEDs are the same, prefer
external paths over inter-
nal paths.

Source IGP < EBGP < IBGP -
If the MEDs are the same,
prefer first the strictly inte-
rior route, then the strictly
exterior route, then the
exterior route learned from
an interior session.

Closest Neighbor - If IGP
synchronization is disabled
and only internal paths
remain, prefer the path
through the closest neigh-
bor.

Shortest IGP distance - If
the IGP distances are the
same, prefer the route
whose next hop IP address is
closer (with respect to the
IGP distance)

Lowest IP Address - If the
neighbors are equally close,
prefer the route with the
lowest IP address value for
the BGP router ID.

Lowest Router ID - If the
sources are the same, pre-
fer the route whose next
hop IP address is numeri-
cally lowest.

Cisco® (11.0/12.0) GateD (bgp-4-16 draft)
9/26/02 67

Border Gateway Protocol (BGP), GateD V.9.3.2
Cisco®:

router bgp 100

 network 192.168.0.0

 neighbor 192.168.1.1 remote-as 200

 neighbor 192.168.1.1 route-map set-local-pref in

route-map set-local-pref permit 10

 set local preference 120

GateD:

 group type internal peeras 200 setpref 36 { # (254-170+36) = 120

 peer 192.168.1.1;

 };

14.6.1 MED Configuration Example
The following configurations set a metric of 127 on routes exported to AS 200.

Cisco®:

ip as-path access-list 1 permit .*

route-map med permit 10

match as-path 1

set metric 127

GateD:

 export proto bgp as 200 {

 proto bgp aspath .* origin any {

 all metric 127;

 };

 };

14.6.2 Import Filter Example
Cisco®:

router bgp 200

 neighbor 192.168.10.32 remote-as 100

 neighbor 192.168.10.32 filter-list 2 in

ip as-path access-list 2 deny _690$

ip as-path access-list 2 permit .*
68 9/26/02

Configuring GateD, V.9.3.2
GateD:

 autonomoussystem 200;

 routerid 192.168.10.55;

 bgp on {

 group type external peeras 100 {

 peer 192.168.10.32;

 };

 };

 import proto bgp aspath (.* 690) origin any {

 all restrict;

 };

 import proto bgp aspath (.*) origin any {

 all;

 };

14.6.3 Export Filter Example
Cisco®:

router bgp 200

 neighbor 192.168.10.32 remote-as 100

 neighbor 192.168.10.32 filter-list 3 out

ip as-path access-list 3 deny _400$

ip as-path access-list 3 permit .*

GateD:

 autonomoussystem 200;

 routerid 192.168.10.55;

 bgp on {

 group type external peeras 100 {

 peer 192.168.10.32;

 };

 };

 export proto bgp as 100 {

 proto bgp aspath (.* 400) origin any {

 all restrict;

 };

 proto bgp aspath (.*) origin any {

 all;

 };
9/26/02 69

Border Gateway Protocol (BGP), GateD V.9.3.2
 };

14.7 BGP Issues

14.7.1 Third-Party Route Advertisement
Third-party route advertisements are a special form of advertisements to peers. In partic-
ular, any advertisement that has a next hop attribute that contains an IP address different
from the IP address of the peer sending the advertisement is called “third party.” A third-
party advertisement is legal, essentially, when the next hop that is advertised is on the
network that is used for peering.

GateD, by default, performs third party route advertisements when the next hop that it is
using, if used, would result in a legal third-party route advertisement. Also, by default,
GateD rejects third-party route advertisements that are illegal. There are two options that
can be used to alter this default behavior: nexthopself and gateway. The former deals
with routes originated by GateD, the latter with both sending and receiving third-party
advertisements.

nexthopself causes GateD to include a next hop of its own IP address in all advertise-
ments to an external peer. Hence, no advertisements that GateD sends could be consid-
ered third party.

The second option, gateway, is meant for use in situations where the peers are not directly
connected to one another. With the gateway option, you specify the first hop along the
path to the peer. GateD will then perform third-party route advertisements as though the
network shared with the gateway were really the network shared with the peer. GateD will
also substitute, on received advertisements, the address of the gateway for the address of
the next hop received.

The following is a sample BGP statement in which GateD turns off third-party route adver-
tisements with respect to peer 192.168.10.1, but not with respect to 192.168.10.2.

 bgp yes {

 group type external peeras 1 {

 peer 192.168.10.1 nexthopself;

 peer 192.168.10.2;

 };

 };

In the preceding example, if GateD learned reachability for network 192.168.20 with a
next hop of 192.168.10.100, the advertisements to peer 192.168.10.1 and peer
192.168.10.2 would differ: the advertisement to peer 192.168.10.1 would contain a next
hop of the GateD box, and the advertisement to peer 192.168.10.2 would contain a next
hop of 192.168.10.100.

And here is an example where the GateD box is attached to the network 192.168.10/24,
but the peer is not. Note that the gateway router (192.168.10.1) must be able to forward
packets to the peer (192.168.77.12).

 bgp yes {

 group type external peeras 1 {

 peer 192.168.77.12 gateway 192.168.10.1;
70 9/26/02

Configuring GateD, V.9.3.2
 };

 };

In this example, GateD will ensure that all of the next hops that it advertises to its peer
(192.168.77.12) are on the network shared with the gateway (192.168.10/24). Any next
hops that it receives from the peer (192.168.77.12) will be replaced with the address of
the gateway (192.168.10.1).

14.7.2 Determining Next Hops
In GateD, at present, there are three different cases for next hop determination: group
type internal, group type external, and anything else. Modification of the next hop
for group type external is covered in “Third-Party Route Advertisement” on page 70. As
far as IBGP peers are concerned, the BGP specification is clear: the next hop that is sent
shall be the next hop that was received.

group type internal is intended for peers on directly attached networks. If the peers
are not on directly shared networks, group type routing should be used.

For next hop determination, group type routing uses essentially the same algorithm that
external peers with the gateway option use. GateD determines which network is being
used to reach the immediate next hop to its peer. It then ensures that the next hop adver-
tised is on the same network as the immediate next hop.

14.7.3 AS Path Stuffing and Spoofing
AS Path “stuffing” or “prepending” is accomplished with the ascount command. ascount
is used to bias upstream peers' route selection. (Most routers prefer routes with shorter AS
Paths.)

In previous versions of BGP, the specification had not allowed the existence of looped AS
Paths. Loops must be ignored in order to allow AS prepending. The localas command can
be used to spoof the AS that BGP represents to a group of peers. The default AS is that con-
figured in the autonomoussystem statement. localas provides a way to speak BGP from
more than one AS.

14.7.4 Route Reflection Overview and Examples
Generally, all border routers in a single AS need to be internal peers of each other, and, in
fact, all non-border routers frequently need to be internal peers of all border routers.
Although this configuration is usually acceptable in small networks, it may lead to unac-
ceptably large internal peer groups in large networks. To help address this problem, BGP
supports route reflection for internal peer groups. When using route reflection, the rule
that a router may not readvertise routes from internal peers to other internal peers is
relaxed for some routers, called “route reflectors”. A typical use of route reflection might
involve a “core” backbone of fully meshed routers (all the routers in the group peered
directly with all other routers in the group). Some of these routers act as route reflectors
for routers that are not part of the core group.

Two types of route reflection are supported: routes can be sent to all internal peers or only
to internal peers that are not members of the client's group. By default, all routes received
by the route reflector from a client are sent to all internal peers (including the client's
9/26/02 71

Border Gateway Protocol (BGP), GateD V.9.3.2
group, but not the client itself). If the no-client-reflect option is enabled, routes
received from a route reflection client are sent only to internal peers that are not mem-
bers of the client's group. In this case, the client's group must itself be fully meshed. In
either case, all routes received from a non-client internal peer are sent to all route reflec-
tion clients.

Typically, a single router will act as the reflector for a set (or cluster) of clients. However,
for redundancy, two or more can also be configured to be reflectors for the same cluster. In
this case, a cluster ID should be selected using the clusterid keyword to identify all
reflectors serving the cluster. Gratuitous use of multiple redundant reflectors is not
advised, because it can lead to an increase in the memory required to store routes on the
redundant reflectors' peers.

No special configuration is required on the route reflection clients. From a client's perspec-
tive, a route reflector is simply a normal IBGP peer. Any BGP version 4 speaker should be
able to be a reflector client.

Refer to the route reflection specification document (RFC 1966) for further details. RFC
1966 can be found at:

http://www.ietf.org/rfc/rfc1966.txt

All routes received from any group member will be sent to all other internal neighbors, and
all routes received from any other internal neighbors will be sent to the reflector clients.
Because the route reflector forwards routes in this way, the reflector-client group need not
be fully meshed. If the no-client-reflect option is specified, routes received from
reflector clients will only be sent to internal neighbors that are not in the same group as
the sending reflector client. In this case, the reflector-client group should be fully meshed.
In all cases, routes received from normal internal peers will be sent to all reflector clients.

Note: It is necessary to export routes from the local AS back into the local AS when acting
as a route reflector. For example, suppose that the local AS number is 2. An export state-
ment like the following would suffice to make reflection work correctly.

 export proto bgp as 2 {

 proto bgp as 2 {all;}; # for reflection

 # other exports

 };

If the cluster ID is changed and GateD is reconfigured with a SIGHUP, all BGP sessions with
reflector clients will be dropped and restarted.

Another example follows.

 traceoptions "/var/tmp/gated.log" replace size 1000k files 3 all;

 autonomous-system 64512;

 routerid 192.168.11.1;

 bgp yes {

 group type internal peeras 64512 reflector-client {

 peer 192.168.10.2;

 peer 192.168.10.3;
72 9/26/02

http://www.ietf.org/rfc/rfc1966.txt

Configuring GateD, V.9.3.2
 peer 192.168.10.4;

 peer 192.168.10.5;

 peer 192.168.10.6;

 };

 group type internal peeras 64512 {

 peer 192.168.11.2;

 peer 192.168.11.3;

 };

 };

 static {

 default gw 172.16.0.1 retain;

 };

 import proto bgp as 64512 {

 all;

 };

 export proto bgp as 64512 {

 proto bgp as 64512 {

 all;

 };

 };

14.7.5 Weighted Route Damping Overview, Syntax, and Defaults
The basic idea of weighted route damping is to treat routes that are being announced and
withdrawn (flapping) at a rapid rate as unreachable.

If a route flaps at a low rate, it should not be suppressed at all, or suppressed only for a
brief period of time. With weighted route damping, the suppression of a route or routes
occurs in a manner that adapts to the frequency and duration that a particular route
appears to be flapping. The more a route flaps during a period of time, the longer it will be
suppressed. The adaptive characteristics of weighted route damping are controlled by a
few configurable parameters.

Currently, only routes learned via BGP are subject to weighted route damping, although no
protocols will announce suppressed routes. The weighted route damping configuration
statement is not within the BGP statement but is a separate and distinct configuration;
conceptually, it is much like interface or kernel statements. (Refer to “Chapter 7 Inter-
face Statement” on page 23 and “Chapter 18 Kernel Interface” on page 95 for more infor-
mation.)

The syntax for weighted route damping in GateD is:

 dampen-flap {
9/26/02 73

Border Gateway Protocol (BGP), GateD V.9.3.2
 [suppress-above metric ;]

 [reuse-below metric ;]

 [max-flap metric ;]

 [unreach-decay time ;]

 [reach-decay time ;]

 [keep-history time ;]

 };

suppress-above metric

suppress-above is the value of the instability metric at which route suppression will take
place (a route will not be installed in the FIB or announced even if it is reachable during
the period that it is suppressed).

reuse-below metric

reuse-below is the value of the instability metric at which a suppressed route will become
unsuppressed, if it is reachable but currently suppressed. The value assigned to reuse-
below must be less than suppress-above.

max-flap metric

max-flap is the upper limit of the instability metric. This value must be greater than the
larger of 1 and suppress_above.

Assigned to the above three parameters is a floating point number in units of flaps. Each
time a route becomes unreachable, 1 is added to the current instability metric.

reach-decay time

reach-decay specifies the time desired for the instability metric value to reach one half of
its current value when the route is reachable. This half-life value determines the rate at
which the metric value is decayed. A smaller half-life value will make a suppressed route
reusable sooner than a larger value.

unreach-decay time

unreach-decay acts the same as reach-decay except that it specifies the rate at which
the instability metric is decayed when a route is unreachable. It should have a value
greater than or equal to reach-decay.

keep-history time

keep-history specifies the period over which the route flapping history is to be main-
tained for a given route. The size of the configuration arrays described below is directly
affected by this value.

If only dampen-flap {}; is specified in the configuration file, then the following default
values are used:

 suppress-above = 3.0;

 reuse-below = 2.0;

 max-flap = 16.0;

 unreach-decay = 900;

 reach-decay = 300;
74 9/26/02

Configuring GateD, V.9.3.2
 keep-history = 1800

14.7.6 Setpref/Local_Pref Overview
Note: The term “preference” as used in setpref/Local_Pref is not the same as each pro-
tocol's preference in GateD. Each protocol has a parameter, preference, that specifies
how active routes will be selected. When a route has been learned from more than one
protocol, the active route will be selected from the protocol with the lowest preference.
Each protocol has a default preference in this selection. setpref/Local_Pref is BGP-spe-
cific and does not influence how active routes from BGP will compare to those learned
from other protocols.

The setpref option allows GateD to set the Local_Pref to reflect GateD’s own internal
preference for the route, as given by the global protocol preference value (which can be
found at “Preference Selection Precedence” on page 12). Local_Pref can be used by a
BGP speaker to inform other BGP speakers in its own autonomous system of the originating
speaker's degree of preference for an advertised route. The setpref option can be used
with routing or internal type groups. The Local_Pref is never set directly, but rather as a
function of the GateD preference and setpref metrics.

If the setpref option is set on one internal peer group, it must be set on all internal peer
groups. The setpref option may be used only on internal peer group types (internal or
routing).

The translation of GateD’s internal preference to and from Local_Pref is done as follows.
In the table below, metric is the argument to setpref. (For example, in the statement,
“setpref 100,” metric is 100.) “Exported Preference” is the GateD preference of the
exported route. “Imported Preference” is the GateD preference assigned to the imported
route.

In effect, any GateD preference of less than metric is exported such that it will be re-
imported (by a distant GateD) with a preference of exactly metric. Any preference of
metric or above will be exported such that it will be re-imported with the same prefer-
ence it had originally.

Local_Pref, as exported to BGP peers, is calculated as:

Local_Pref = 254 - (global protocol preference for this route) + metric

A value greater than 254 will be reset to 254. GateD will only send Local_Pref values
between 0 and 254. For example, suppose GateD is sending routes to an internal group
using “setpref 100,” and the routes are subsequently received by another router in the
group, also using “setpref 100.”

Exported
Preference Local_Pref Imported

Preference

Less than metric 254 metric

metric to 254 254 to metric metric to 254

N/A Greater than 254 metric
9/26/02 75

Border Gateway Protocol (BGP), GateD V.9.3.2
The table below lists some sample route preferences, the Local_Prefs with which the
routes will be sent, and the preferences with which the routes will be imported.

Notes:

• Non-GateD IBGP implementations may send Local_Prefs that are greater than 254.
When operating a mixed network of this type, it is recommended that all routers
restrict themselves to sending Local_Prefs in the range metric to 254.

• All routers in the same network that are running GateD and participating in IBGP
should use setpref uniformly. That is, if one router has setpref set, all should set
it, and all should use the same value of metric. The value for metric should be
selected to be consistent with the import policy in use in the network. For example,
if import policy sets GateD preferences ranging from 170 to 200, a setpref metric
of 170 would make sense. It is advisable to set metric high enough to avoid conflicts
between BGP routes and IGP or static routes.

Routes propagated by IBGP must include a Local_Pref attribute. Local_Pref may be used
by a BGP speaker to inform other BGP speakers in its own autonomous system of the origi-
nating speaker's degree of preference for an advertised route. Unless the setpref option
has been set, BGP sends the Local_Pref path attribute as 100.

GateD always uses the received Local_Pref to select between BGP routes that have the
same GateD preference. BGP routes with a larger Local_Pref are preferred.

Preference Before
Export Local_Pref Preference After

Import

170 184=(254-170+100) 170

171 183 171

254 100 254

100 254 100

5 254 100
76 9/26/02

Configuring GateD, V.9.3.2
For this topology:

 BGP2 AS 65000

 / \

 / \

 BGP1----BGP3 AS 65100

 | |

 | |

The following configuration will cause AS 65100 to prefer routes from the BGP1--BGP2 link.

BGP1 Configuration

 bgp yes {

 group type external peeras 65000 {

 peer 10.0.0.2; # BGP2

 };

 group type internal peeras 65100 setpref 100 {

 peer 192.168.10.2; # BGP3

 };

 };

BGP3 Configuration

 bgp yes {

 group type external peeras 65000 {

 peer 10.0.0.2; # BGP2

 };

 group type internal peeras 65100 setpref 99 {

 peer 192.168.10.1; # BGP1

 };

 };

14.7.7 Communities Overview and Examples
The community attribute allows the administrator of a routing domain to tag groups of
routes with a community tag. Using communities allows the administrator to limit the
routes that can be imported or exported. The tag consists of 2 octets of AS and 2 octets of
community ID. The community attribute is passed from routing domain to routing domain
to maintain the grouping of these routes. A set of routes may have more than one commu-
nity tag in its community attribute.
9/26/02 77

Border Gateway Protocol (BGP), GateD V.9.3.2
The import and export policy of a community is configured using the comm clause (or comm-
add clause) on the group, import, and export statements.

Please refer to the communities specification (RFC 1997) and its accompanying usage doc-
ument (RFC 1998) for further details on BGP communities. RFC 1997 can be found at:

http://www.ietf.org/rfc/rfc1997.txt

RFC 1998 can be found at:

http://www.ietf.org/rfc/rfc1998.txt

Communities can be specified as an AS and a community ID (with the comm-split key-
word) or as one of the distinguished special communities (with the comm keyword). When
originating BGP communities, the set of communities that is actually sent is the union of
the communities received with the route (if any), those specified in group policy (if any),
and those specified in export policy (if any). When receiving BGP communities, the update
is matched only if all communities specified in comm are present in the BGP update. (If
additional communities are also present in the update, it will still be matched.) The limit
of 25 communities in any single policy clause can be increased at compile time by increas-
ing the value of AS_COMM_MAX.

comm-split autonomous_system community_id

comm-split causes a community “tag” to be added to the transmitted path attributes. The
autonomous_system part of the community should be set to the local AS, unless there is a
specific need to do otherwise. This associates an AS with a community.

community no-export

community no-export is a special community that indicates that the routes associated
with this attribute must not be advertised outside a BGP AS boundary.

community no-advertise

community no-advertise is a special community that indicates that the routes associated
with this attribute must not be advertised to other BGP peers.

community no-export-subconfed

community no-export-subconfed is a special community that indicates that the routes
associated with this attribute must not be advertised to external BGP peers.

community none

community none is not actually a community, but rather a keyword that specifies that a
received BGP update is only to be matched if no communities are present. It has no effect
when originating communities.

The following example will import only routes from AS 203 that are stamped with commu-
nity 99:

 import proto bgp as 203

 comm {

 comm-split 203 99

 }

 {
78 9/26/02

http://www.ietf.org/rfc/rfc1997.txt
http://www.ietf.org/rfc/rfc1998.txt

Configuring GateD, V.9.3.2
 all;

 };

The following example will export only routes to AS 205 and from AS 203 that are stamped
with community 99:

 export proto bgp as 205

 comm {

 comm-split 203 99

 }

 {

 proto bgp static {

 all;

 };

 };

Communities are added to a route on export with the comm-add aspath options.

 export proto bgp as 205

 comm-add {

 comm-split 203 99

 }

 {

 proto bgp static {

 all;

 };

 };

14.7.8 Multi-Exit Discriminator Overview and Examples
The Multi-Exit Discriminator (MED) allows the administrator of a routing domain to choose
between various exits from a neighboring AS. This attribute is used only for decision-mak-
ing in choosing the best route to the neighboring AS. If all the other factors for a path to a
given AS are equal, the path with the lower MED value takes preference over other paths.

This attribute, if learned from an external AS, can be propagated only to internal peers,
unless you are in a BGP Confederation. The MED value can be propagated to BGP Confeder-
ation external peers. The MED value is propagated only if the med keyword is specified on
the BGP peers or group.

The MED attribute for BGP version 4 is a four-byte unsigned integer. MED is originated using
the metricout option of group or peer statements or the metric option of the export
statement. It is imported using the med keyword on the BGP group statement.
9/26/02 79

Border Gateway Protocol (BGP), GateD V.9.3.2
The metricout and metric options are used to specify the value of MED for exported
routes. The metricout option can be specified on the group statement:

 group type external peeras 31337 metricout 5 {

 peer 192.168.10.32;

 peer 192.168.10.33;

 };

It can also be specified on the peer statement:

 group type external peeras 31337 {

 peer 192.168.10.32 metricout 2;

 peer 192.168.10.33 metricout 3;

 };

The equivalent metric keyword can be specified on the export statement like this:

 export proto bgp as 31337 metric 5 {

 proto static {

 all;

 };

 };

And like this:

 export proto bgp as 31337 {

 proto bgp as 64000 metric 1 {

 all;

 };

 proto static metric 3 {

 all;

 };

 proto direct metric 7 {

 all;

 };

 };

The med keyword must be specified on the group statement for GateD to consider metrics
when calculating a next hop (the default action is to ignore MEDs).

14.7.9 Confederations
The BGP specification requires that all internal BGP speakers maintain a full mesh. As the
number of BGP speakers in an AS grows, the number of peering sessions that must be main-
tained grows factorially. This can put a great strain on infrastructure both in terms of the
hardware in routers and in terms of the amount of bandwidth consumed by routing traffic.

In order to help relieve the strain on resources, RFC 3065 specifies an alternative to full
mesh IBGP known as “BGP Confederations.” A BGP Confederation is a collection of autono-
80 9/26/02

Configuring GateD, V.9.3.2
mous systems that present themselves as a single AS to peers outside of the confederation.
RFC 3065 can be found at:

http://www.ietf.org/rfc/rfc3065.txt

All BGP speakers within a confederation are assigned two AS numbers. The first of these is
their normal AS number to be used within the confederation. The second is known as their
confederation ID.

All BGP speakers within a single confederation must be assigned the same confederation
ID. This confederation ID is the autonomous system number that BGP speakers outside of
the confederation see as consisting of all BGP speakers within the confederation, despite
the fact that the various members of the confederation can be within different autono-
mous systems.

When BGP speakers within the same confederation communicate with each other, they
perform identically to BGP speakers not in confederations with one exception: rather than
using the AS_SEQUENCE and AS_SET path attributes, they use the CONFED_SEQUENCE and
CONFED_SET path attributes. Then, when a BGP speaker within the confederation goes to
advertise routes to a BGP speaker not within the confederation, all attributes of the type
CONFED_SEQUENCE or CONFED_SET are stripped and replaced with a single AS_SEQUENCE
consisting of the confederation identifier. In this fashion, the internal AS topology of the
confederation is kept hidden from the rest of the world.

The following gated.conf shows a confederation border router. It has two peers outside of
the confederation, one inside the confederation, and some confederation internal peers.

 autonomoussystem 64512;

 confed-id 100;

 bgp yes {

 group type routing peeras 64512 confed proto ospf {

 peer 192.168.1.1 ;

 peer 192.168.1.4 ;

 } ;

 group type external peeras 65000 confed {

 peer 10.132.10.1 ;

 } ;

 group type external peeras 200 {

 peer 172.16.50.1 ;

 } ;

 } ;

 # Import everything from our internal confederation peers

 import proto bgp as 64512 {

 all ;

 } ;

9/26/02 81

http://www.ietf.org/rfc/rfc3065.txt

Border Gateway Protocol (BGP), GateD V.9.3.2
 # Import everything from our external confederation peer

 import proto bgp as 65000 {

 all ;

 } ;

 # Import everything from our external non-confederation peer

 import proto bgp as 200 {

 all ;

 } ;

 # Redistribute everything from our external non-confederation and our
 # external confederation peer to our internal peers. Note that we are
 # not operating as a route reflector, so we do not redistribute routes
 # from our internal peers to our other internal peers.

 export proto bgp as 64512 {

 proto bgp as 200 {

 all ;

 } ;

 proto bgp as 65000 {

 all ;

 } ;

 } ;

 # Redistribute our routes from our external confederation peer to our
 # internal confederation peers and our external non-confederation
 # peer.

 export proto bgp as 65000 {

 proto bgp as 200 {

 all ;

 } ;

 proto bgp as 64512 {

 all ;

 } ;

 } ;

 # We want to receive traffic for this AS on our external links, so
 # propogate everything from our confederation.

 export bgp as 200 {
82 9/26/02

Configuring GateD, V.9.3.2
 proto bgp as 64512 {

 all ;

 } ;

 proto bgp as 65000 {

 all ;

 } ;

 } ;

9/26/02 83

Border Gateway Protocol (BGP), GateD V.9.3.2
84 9/26/02

Chapter 15
Router Discovery

15.1 Router Discovery Overview
The Router Discovery Protocol is an IETF standard protocol, RFC 1256, used to inform hosts
of the existence of routers. It is intended to be used instead of having hosts wiretap routing
protocols, such as RIP. It is used in place of, or in addition to, statically-configured default
routes in hosts. RFC 1256 can be found at:
http://ietf.org/rfc/rfc1256.txt

The protocol is split into two portions: the server portion, which runs on routers, and the
client portion, which runs on hosts. GateD treats these much like two separate protocols,
only one of which can be enabled at a time.

15.1.1 The Router Discovery Server
The router discovery server runs on routers and announces their existence to hosts. It
announces the routers' existence by periodically multicasting or broadcasting a router
advertisement from each interface on which it is enabled. These router advertisements con-
tain a list of all the routers' addresses on a given interface, and the preferences indicate
which address or addresses are a better choice for use as a default route.

Initially, these router advertisements occur every few seconds, then fall back to every few
minutes. In addition, a host can send a router solicitation to which the router will respond
with a unicast router advertisement (unless a multicast or broadcast advertisement is due
momentarily).

Each router advertisement contains an advertisement lifetime field indicating for how
long the advertised addresses are valid. This lifetime is configured such that another router
advertisement will be sent before the lifetime has expired. A lifetime of zero is used to
indicate that one or more addresses are no longer valid.

On systems supporting IP multicasting, the router advertisements are, by default, sent to
the all-hosts multicast address 224.0.0.1. However, the use of broadcast can be specified.
When router advertisements are being sent to the all-hosts multicast address, or an inter-
face is configured for the limited-broadcast address 255.255.255.255, all IP addresses con-
figured on the physical interface are included in the router advertisement. When the router
advertisements are being sent to a net or subnet broadcast, only the address associated
with that net or subnet is included.

A host listens for router advertisements via the all-hosts multicast address (224.0.0.1) if IP
multicasting is available and enabled, or on the interface's broadcast address. When starting
9/26/02 85

Router Discovery, GateD V.9.3.2
up, or when reconfigured, a host can send a few router solicitations to the all-routers mul-
ticast address, 224.0.0.2, or the interface's broadcast address.

When a router advertisement with non-zero lifetime is received, the host installs a default
route to each of the advertised addresses. If the preference is ineligible, or the address is
not on an attached interface, the route is marked unusable but retained. If the preference
is usable, the metric is set as a function of the preference such that the route with the
best preference is used. If more than one address with the same preference is received,
the one with the lowest IP address will be used. These default routes are not exportable to
other protocols.

When a router advertisement with a zero lifetime is received, the host deletes all routes
with next-hop addresses learned from that interface of the sending router. In addition, any
routes learned from ICMP redirects pointing to these addresses will be deleted. The same
will happen when a router advertisement is not received to refresh these routes before the
lifetime expires.

15.1.2 The Router Discovery Client
The router discovery client is provided for historical purposes only. It is an untested fea-
ture of GateD and will likely be deprecated in the future.

15.2 Router Discovery Syntax

 routerdiscovery server (on | off) [{

 traceoptions trace_options ;

 interface phys_interface_list

 [maxadvinterval max_time]

 [minadvinterval min_time]

 [lifetime life_time]

 ;

 address interface_list

 [advertise | ignore]

 [broadcast | multicast]

 [ineligible | preference preference]

 ;

 }] ;

 routerdiscovery client (on | off) [{
 traceoptions trace_options ;
 preference preference ;
 interface phys_interface_list
 [enable | disable]
 [multicast | broadcast]
 [quiet | solicit]
 ;
 }] ;
86 9/26/02

Configuring GateD, V.9.3.2
15.3 Router Discovery Defaults
 routerdiscovery server off [{

 interface all

 (maxadvinterval 00:10:00

 minadvinterval .75*max_time

 lifetime 3*max_time)

 ;

 address interface_list

 advertise

 multicast

 preference 0

 ;

 }] ;

 routerdiscovery client off [{

 preference 0 ;

 interface all enable

 enable

 multicast

 ;

 }] ;

15.4 Router Discovery Examples

15.4.1 Example 1
The following example runs router discovery on the interface fxp0, sending solicitations to
the multicast address.

routerdiscovery client on {

interface fxp0 enable multicast solicit;

};

15.4.2 Example 2
The following example runs the router discovery server on interface fxp0 sending adver-
tisements no more often than once every minute, and no less often than once every 6 min-
utes. All routers that it advertises out interface fxp0 will be advertised with a lifetime of
10 minutes.

routerdiscovery server on {

interface fxp0 minadvinterval 1:00 maxadvinterval 6:00
9/26/02 87

Router Discovery, GateD V.9.3.2
 lifetime 10:00;

}

88 9/26/02

Chapter 16
Internet Control Message Protocol (ICMP)
16.1 ICMP Overview

On systems without the BSD routing socket, GateD listens to Internet Control Message Proto-
col (ICMP) messages received by the system. GateD currently supports redirect. Processing
of ICMP redirect messages is handled by the redirect statement. (See “Chapter 17 Redirect
Processing” on page 91 for more information about redirect.)

Currently, the only reason to specify the icmp statement is to be able to trace the ICMP
messages that GateD receives. These messages may be traced to a separate log file as
allowed by any GateD traceoptions clause. This allows for easy separation of non-redirect
ICMP messages from redirect messages in the trace file.

16.2 ICMP Syntax
 icmp {

 traceoptions
 [tracefile [replace]
 [size tracesize [k | m] files tracefiles]] [nostamp]
 [trace_global_options | trace_protocol_packets]
 [except (trace_global_options | trace_protocol_packets)];

 } ;

More detailed descriptions of these commands can be found on page 307 of the Command
Reference Guide.

16.3 ICMP Sample Configuration
This example traces all ICMP messages received except for redirects, which may be traced
from the redirect clause.

 icmp {

 traceoptions "/tmp/icmp_log" packets routerdiscovery info error ;

 }
9/26/02 89

Internet Control Message Protocol (ICMP), GateD V.9.3.2
90 9/26/02

Chapter 17
Redirect Processing
17.1 Redirect Overview

ICMP redirects are messages sent by a router to an originator of data, indicating that a dif-
ferent hop should be used to reach the destination. A router sends a redirect when a routing
table lookup for a received datagram results in transmission of the datagram out the same
interface on which it was received. An example is:

 A B

 | |

 ---+---+---+---

 |

 C

Node A is a host, while nodes B and C are routers. A sends a packet to some network N and
uses C as a next hop. After looking up the next hop for N, if C discovers that its next hop for
N is router B, C can send a redirect to A, indicating that it should use B as a next hop
directly instead of C.

17.2 Why GateD Monitors Redirects
Redirects have traditionally been intended for hosts. It is expected that routers have more
accurate information about the network than hosts, which are not participating in a routing
protocol. Since GateD operates as a router, ICMP redirects are accepted only under certain
circumstances.

Many operating systems do not allow the administrator to ignore redirects. To ignore the
effects of redirects, GateD must process each one and actively monitor and change the
state of the routing table.

GateD monitors ICMP redirects through a raw ICMP socket, and, where supported, a kernel
routing socket. On systems without a routing socket, it may not be possible to discern the
action taken by the kernel upon receipt of a redirect.

17.3 Redirect Processing
Redirects are ignored if:

• The source is not on the same network as the receiving interface.
• The source is not a router currently in use, e.g., by a route installed in the FIB.
• The source is one of our own interfaces.
• The destination being redirected matches an interface route.
9/26/02 91

Redirect Processing, GateD V.9.3.2
• noredirects is configured on the receiving interface (see redirect interface pol-
icy).

• The source does not match trustedgateways policy (see redirect gateway pol-
icy).

• The source is not directly reachable (by an interface).

According to the IETF Router Requirements document, all ICMP redirects are processed as
host redirects. If a net redirect is received, GateD attempts to update the FIB by changing
the route to a host route.

If a redirect is received on the routing socket, the kernel can indicate that the redirect
was installed. This allows GateD to install a “mirror” route in its own RIB. These routes are
deleted after three minutes if the state is not refreshed. This allows the transient pres-
ence of a redirect route. It is expected that the IGP will provide a better route, which will
override the redirect within that time period.

17.4 Configuration
Policy for receipt of redirects may be based on both the receiving interface (the inter-
face option) and source gateway (the trustedgateways option). The preference of
installed routes is given with the preference option.

17.5 Redirect Syntax
 redirect on | off

 [{

 preference preference ;

 interface interface_list [noredirects] [redirects] ;

 trustedgateways gateway_list ;

 traceoptions trace_options ;

 }] ;

More detailed descriptions of these commands can be found on page 313 of the Command
Reference Guide. See “Chapter 31 Route Importation” on page 137 for information about
importing and redirects.

17.6 Configuration Defaults
The default configuration values are:

 redirect on {

 preference 30;

 interface all redirects;

 };

17.7 Redirect Sample Configurations

Example 1

This configuration disables processing of redirects on all interfaces and traces reception to
the file /tmp/redirlog.
92 9/26/02

Configuring GateD, V.9.3.2
 redirect on {

 traceoptions "/tmp/redirlog" all;

 interface all noredirects;

 };

Example 2

This configuration enables processing of redirects on interface 'le0', only if they were orig-
inated by the router with interface address 192.168.10.2. Any routes created by redirect
processing are given a GateD preference of 200.

 redirect on {

 preference 200;

 interface le0 redirects;

 trustedgateways 192.168.10.2;

 };
9/26/02 93

Redirect Processing, GateD V.9.3.2
94 9/26/02

Chapter 18
Kernel Interface
18.1 Kernel Interface Overview

Although the kernel interface is not technically a routing protocol, it has many characteris-
tics of one, and GateD handles it similarly. The routes GateD chooses to install in the kernel
forwarding table are those that will actually be used by the kernel to forward packets.

The add, delete, and change operations that GateD must use to update the typical kernel
forwarding table take a non-trivial amount of time. The time used does not present a prob-
lem for older routing protocols (such as RIP), which are not particularly time critical and do
not easily handle large numbers of routes anyway. The newer routing protocols (such as
OSPF and BGP) have stricter timing requirements and are often used to process many more
routes. The speed of the kernel interface becomes critical when these protocols are used.

To prevent GateD from locking up for significant periods of time while installing large num-
bers of routes (up to a minute or more has been observed on real networks), the processing
of these routes is done in batches. The size of these batches can be controlled by the tuning
parameters shown below, but normally the default parameters will provide the proper func-
tionality.

During normal shutdown processing, GateD deletes all the routes it has installed in the ker-
nel forwarding table, except for those static routes marked with retain. Optionally, GateD
can leave all routes in the kernel forwarding table by not deleting any routes using noflus-
hatexit. This option is useful on systems with large numbers of routes because it elimi-
nates the need to re-install the routes when GateD restarts, which can greatly reduce the
time it takes to recover from a restart.

18.2 Kernel Interface Syntax
 kernel {

 [options

 [nochange]

 [noflushatexit]

 ;]

 [remnantholdtime time ;]

 [routes number ;]

 [flash

 [limit number]

 [type (interface | interior | all)]
9/26/02 95

Kernel Interface, GateD V.9.3.2
 ;]

 [background

 [limit number]

 [priority (flash | higher | lower)]

 ;]

 [traceoptions
 [tracefile [replace]
 [size tracesize [k | m] files tracefiles]] [nostamp]
 [trace_global_options | trace_protocol_options |
 trace_protocol_packets]
 [except (trace_global_options | trace_protocol_options |
 trace_protocol_packets)]
 ;]

 } ;

More detailed descriptions of these commands can be found on page 321 of the Command
Reference Guide.

18.3 Forwarding Tables and Routing Tables
The rest of this section assumes that the reader understands how GateD interacts with a
UNIX system.

The forwarding table, also known as the forwarding information base (FIB), is the table
that controls the forwarding of packets in the kernel. The routing table, also known as the
routing information base (RIB), is the table that GateD uses internally to store routing
information that it learns from routing protocols. The routing table is used to collect and
store routes from various protocols. For each unique combination of network and mask, an
active route is chosen. This route will be the one with the best (numerically smallest) pref-
erence. All the active routes are installed in the kernel forwarding table. The entries in
this table are what the kernel actually uses to forward packets.

18.3.1 Updating the Forwarding Table
Two main methods of updating the kernel FIB are the ioctl() interface and the routing
socket interface.

18.3.1.1 The ioctl() Interface
The ioctl() interface to the forwarding table was introduced in BSD 4.3 and widely dis-
tributed in BSD 4.3. It has several limitations, including:

• fixed subnet masks
• a one-way interface
• blind updates
• the inability to support changes

Fixed Subnet Masks

The ioctl() interface allows only fixed subnet masks. The BSD 4.3 networking code
assumed that all subnets of a given network had the same subnet mask. This limitation is
96 9/26/02

Configuring GateD, V.9.3.2
enforced by the kernel. The network mask is not stored in the kernel forwarding table, but
determined when a packet is forwarded by searching for interfaces on the same network.

One-way Interface

Because of the one-way interface, GateD is able to update the kernel forwarding table, but
it is not aware of other modifications of the forwarding table. GateD is able to listen to
ICMP messages and guess how the kernel has updated the forwarding table in response to
ICMP redirects.

Blind Updates

Because of blind updates, GateD is not able to detect changes to the forwarding table
resulting from the use of the route command by the system administrator. Use of the route
command on systems that use the ioctl()interface is strongly discouraged while GateD is
running.

No Change

Because no change operation is supported, a route must be deleted and a new one added
to change a route that exists in the kernel.

18.3.1.2 The Routing Socket Interface
The routing socket interface to the kernel forwarding table was introduced in BSD 4.3 Reno,
widely distributed in BSD 4.3 Net/2, and improved in BSD 4.4. This interface is simply a
socket, similar to a UDP socket, on which the kernel and GateD exchange messages. It has
several advantages over the ioctl() interface, including:

• variable subnet masks
• a two-way interface
• visible updates
• the ability to support changes
• the ability to be expanded

Variable Subnet Masks

Variable subnet masks are different masks that can be used on the subnets of the same
network. Because the network mask is passed to the kernel explicitly, these variable sub-
net masks can be used. Also, routes with masks that are more general than the natural
mask can be used. Using more general masks is known as “classless” routing.

Two-way Interface

A two-way interface allows GateD to change the kernel forwarding table with this inter-
face and allows the kernel to report changes to the forwarding table to GateD. A redirect
message that has modified the kernel forwarding table can now be reported, which means
that GateD no longer needs to monitor ICMP messages to learn about redirect messages.
Also, the kernel now indicates whether it processed the redirect message, which allows
GateD to safely ignore redirect messages that the kernel did not process.
9/26/02 97

Kernel Interface, GateD V.9.3.2
Visible Updates

Visible updates allow changes to the routing table by other processes, including the route
command, to be received via the routing socket. Because these changes are received,
GateD can ensure that the kernel forwarding table is in sync with the routing table. Also,
the system administrator can use the route command while GateD is running.

Changes

The ability to support changes allows routes in the kernel to be atomically changed.
(Because some early versions of the kernel routing socket code had bugs in the change
message processing, there are compilation time and configuration time options that cause
delete and add sequences to be used in lieu of change messages.)

Expansion

The ability to be expanded allows new levels of kernel/GateD communications to be added
by adding new message types.

18.3.2 Reading the Forwarding Table
When GateD starts up, it reads the kernel forwarding table and installs corresponding
routes into the routing table. These routes are called “remnants” and are timed out after
a three-minute interval, or as soon as a more attractive route is learned. This system
allows forwarding to occur while the routing protocols start learning routes.

Three main methods for reading the forwarding table from the kernel are via:

• kmem
• getkerninfo/sysctl
• OS-specific methods

18.3.2.1 Reading Forwarding Table via kmem
On many systems, especially those based on BSD 4.3, GateD must have knowledge of the
kernel's data structures to read the current state of the forwarding table. This method is
slow and subject to error if the kernel forwarding table is updated while GateD is in the
middle of reading it. Errors are likely to occur if the system administrator uses the route
command, or if an ICMP redirect message is received while GateD is starting up.

Due to an oversight, some systems, such as OSF/1, which are based on BSD 4.3 Reno or later,
do not have the getkerninfo() system call described below, which allows GateD to read
routes from the kernel without knowing about kernel internal structures. On these sys-
tems, it is necessary to read the kernel radix tree from the kernel by reading kernel mem-
ory. Reading the radix tree is even more error prone than reading the hash-based
forwarding table.

18.3.2.2 Reading the Forwarding Table via getkerninfo/sysctl
Besides the routing socket, BSD 4.3 Reno introduced the getkerninfo() system call. This
call allows a user process (such as GateD) to read various information from the kernel with-
out knowledge of the kernel data structures. In the case of the forwarding table, it is
returned to GateD automatically as a series of routing socket messages. This method pre-
98 9/26/02

Configuring GateD, V.9.3.2
vents the problems associated with the forwarding table changing while GateD is reading
it.

BSD 4.4 changed the getkerninfo() interface into the sysctl() interface, which takes
different parameters, but otherwise functions identically.

18.3.2.3 Reading the Forwarding Table via OS-specific Methods
Some operating systems, for example SunOS 5, define their own method of reading the ker-
nel forwarding table. The SunOS 5 version is similar in concept to the getkerninfo()
method.

18.4 Reading the Interface List
The kernel support subsystem of GateD is responsible for reading the status of the kernel's
physical and protocol interfaces periodically. GateD detects changes in the interface list
and notifies the protocols so that they can start or stop instances or peers. The interface
list is read one of the following two ways:

• SIOCGIFCONF
• sysctl

18.4.1 Reading the Interface List with SIOCGIFCONF
On systems based on BSD 4.3, 4.3 Reno and 4.3 Net/2, the SIOCGIFCONF ioctl interface is
used to read the kernel interface list. Using this method, a list of interfaces and some
basic information about them is returned by the SIOCGIFCONF call. Other information must
be learned by issuing other ioctls to learn the interface network mask, flags, MTU, metric,
destination address (for point-to-point interfaces), and broadcast address (for broadcast
capable interfaces).

GateD reads and re-reads this list every 15 seconds, looking for changes. When the routing
socket is in use, GateD also re-reads the list whenever a message is received, indicating a
change in routing configuration. Receipt of a SIGUSR2 signal also causes GateD to re-read
the list. The interval in which GateD reads the list can be explicitly configured in the inter-
face configuration. (See “Chapter 7 Interface Statement” on page 23 for more information
about the interface statement.)

18.4.2 Reading the Interface List with sysctl
BSD 4.4 added the ability to read the kernel interface list via the sysctl system call. The
interface status is returned automatically as a list of routing socket messages that GateD
parses for the required information.

BSD 4.4 also added routing socket messages to report interface status changes immedi-
ately. This allows GateD to react quickly to changes in interface configuration.

When sysctl is used, GateD re-reads the interface list only once a minute. It also re-reads
it on routing table change indications and when a SIGUSR2 is received. This interval can be
explicitly configured in the interface configuration. (See “Chapter 7 Interface Statement”
on page 23 for more information about the interface statement.)
9/26/02 99

Kernel Interface, GateD V.9.3.2
18.5 Reading Interface Physical Addresses
Later versions of the getkerninfo() and sysctl() interfaces return the interface physi-
cal addresses as part of the interface information. On most systems where information
about physical addresses is not returned, GateD scans the kernel physical interface list for
this information for interfaces with IFF_BROADCAST set, assuming that their drivers are
handled the same as Ethernet drivers. On some systems, such as SunOS 4 and SunOS 5, sys-
tem-specific interfaces are used to learn this information.

The interface physical addresses are useful for IS-IS. For IP protocols, they are not cur-
rently used, but may be in the future.

18.6 Reading Kernel Variables
At startup, GateD reads some special variables out of the kernel, which is usually done
with the nlist (or kvm_nlist) system call. Some systems use different methods.

The variables read include the status of UDP checksum creation and generation, IP for-
warding, and kernel version (for informational purposes). On systems where the routing
table is read directly from kernel memory, the root of the hash table or radix tree routing
table is read. On systems where interface physical addresses are not supplied by other
means, the root of the interface list is read.

18.7 Special Route Flags
The later BSD-based kernel supports the special route flags described below:

RTF_REJECT

Instead of forwarding a packet as with a normal route, routes with RTF_REJECT cause pack-
ets to be dropped and unreachable messages to be sent to the packet originators. This
flag is valid only on routes pointing at the loopback interface.

RTF_BLACKHOLE

Like the RTF_REJECT flag, routes with RTF_BLACKHOLE cause packets to be dropped, but
unreachable messages are not sent. This flag is valid only on routes pointing at the loop-
back interface.

RTF_STATIC

When GateD starts, it reads all the routes currently in the kernel forwarding table. Besides
interface routes, it usually marks everything else as a remnant from a previous run of
GateD and deletes it after a few minutes. This means that routes added with the route
command will not be retained after GateD has started. To fix this, the RTF_STATIC flag
was added. When the route command is used to install a route that is not an interface
route, it sets the RTF_STATIC flag. This signals to GateD that the route was added by the
system administrator and should be retained.
100 9/26/02

Chapter 19
Static Routes
19.1 Static Overview

The static statements define the static routes used by GateD. A single static statement
can specify any number of routes. The static statements occur after protocol statements
and before control statements in the gated.conf file. Any number of static statements
may be specified, each containing any number of static route definitions. These routes can
be overridden by routes with better preference values.

19.2 Static Syntax

 static {

 static_dest gateway gateway_list

 [interface interface_list]

 [as autonomous_system]

 [preference preference]

 [static_route_flags] ;

 static_dest interface interface

 [preference preference]

 [static_route_flags] ;

 };

 where

 static_dest is:

 host [inet6] host |

 [inet6] default |

 network [(mask mask) | (masklen number)]

 and

 gateway_list is one or more gateways (routers) that can be used to reach the speci-
fied host or subnet.

 and

 static_route_flags are:

 (retain | reject | blackhole | noinstall | unicast | multicast)
9/26/02 101

Static Routes, GateD V.9.3.2
 and

 host is a host DNS name or address

 interface is:

 (name | address | local address | remote address)

 interface_list is:

 all | (interface ...) # a list of interfaces

More detailed descriptions of these commands can be found on page 337 of the GateD
Command Reference Guide.
102 9/26/02

Chapter 20
Distance Vector Multicast Routing Protocol (DVMRP)
20.1 DVMRP Overview

The dvmrp statement is used to configure DVMRP, which is compliant with the DVMRPv3
specification.

DVMRP is the original IP multicast routing protocol. It was designed to run over both multi-
cast capable LANs (like Ethernet) as well as through non-multicast capable routers. In the
case of non-multicast capable routers, the IP multicast packets are “tunneled” through the
routers as unicast packets. Because DVMRP replicates the packets, it has an effect on per-
formance, but has provided an intermediate solution for IP multicast routing on the Internet
while router vendors decide to support native IP multicast routing.

DVMRP has both “tree construction” and “route” passage functions. The DVMRP “routes”
are loaded into the multicast RIB under import policy and exported using export policy.

20.2 DVMRP Syntax
 dvmrp (on | off | routing-only) {

 [defaultmetric metric ;]

 [preference pref ;]

 [prune-lifetime time ;]

 [traceoptions trace_options ;]

 [interface interface_list {

 [enable ; | disable ; | routing-only ;]

 [metric metric ;]

 [noretransmit ;]

 [tunnel-compat ;]

 [nodvmrpout ;]

 };]

 };

More detailed descriptions of these commands can be found on page 355 of the Command
Reference Guide.

20.3 Sample DVMRP Configurations

20.3.1 Example 1
This configuration configures a DVMRP tunnel between 10.1.25.13 and 10.1.16.4.

 # Simple draft-10 compliant tunnel
9/26/02 103

Distance Vector Multicast Routing Protocol (DVMRP), GateD V.9.3.2
 interfaces {

 define p2p local 10.1.25.13 remote 10.1.16.4 tunnel ipip;

 };

 dvmrp yes {

 interface 10.1.16.4;

 };

 static {

 10.1.16.0 masklen 24 gw 10.1.25.14;

 };

20.3.2 Example 2
 # Simple mrouted compatible tunnel

 interfaces {

 define p2p local 10.1.25.13 remote 10.1.16.4 tunnel ipip;

 };

 dvmrp yes {

 interface 10.1.16.4 {

 tunnel-compat;

 };

 };

 static {

 10.1.16.0 masklen 24 gw 10.1.25.14;

 };

20.4 DVRMP Defaults
The following configuration is equivalent to dvmrp on.

 dvmrp on {

 defaultmetric 1;

 prune-lifetime 7200;

 preference 70;

 interface all {

 enable;

 metric 1;

 };

 };
104 9/26/02

Chapter 21
Protocol Independent Multicast (PIM)
21.1 Overview

Traditional multicast routing mechanisms (for example, DVMRP and MOSPF) were intended
for use within regions where groups are densely populated or bandwidth is universally plen-
tiful. When groups, and senders to these groups, are distributed sparsely across a wide area,
these "dense mode" schemes do not perform efficiently. PIM is made of two protocols, one
for each type of group distribution. PIM Sparse Mode, PIM-SM, provides efficient routing for
a group distributed sparsely across a wide area. PIM Dense Mode, PIM-DM, provides multi-
cast routing for a densely populated group.

Multicasting protocols require two different functions in order to create source-based trees
or group-based trees:

• a set of routes used to calculate the reverse path forwarding
• a mechanism by which to build trees

PIM is protocol independent because it depends on existing unicast routes to calculate the
reverse path forwarding. In contrast, DVMRP passes this set of routes within the protocol.

There are two versions of the PIM-SM protocol. PIM-SM version 1 is documented in RFC
2117. PIM-SM version 2 was constructed to address some of the shortcomings of PIM-SM ver-
sion 1. GateD implements only version 2, which is an RFC but is not considered complete
enough to implement (RFC 2362). In going from draft-ietf-pim-sm-v2-new-01 to draft-ietf-
pim-sm-v2-new-02, the BSR functionality was removed and placed in its own internet draft.
GateD implements the PIM-SM protocol as described in draft-ietf-pim-sm-v2-new-02, but
the BSR functionality as described in draft-ietf-pim-sm-v2-new-01.

GateD does not currently implement PIM-DM.

21.2 PIM Syntax
 pim (on | off){

 [traceoptions trace_options ;]

 [hello-interval sec ;]

 [hello-holdtime sec ;]

 [hello-priority pri ;]

 [mrt-period sec ;]

 [mrt-stale-mult m ;]

 [assert-holdtime sec ;]

 [jp-interval sec ;]

 [jp-holdtime sec ;]
9/26/02 105

Protocol Independent Multicast (PIM), GateD V.9.3.2
 sparse component_name {

 [mrt-spt-mult m ;]

 [threshold bps ;]

 [threshold-dr bps ;]

 [threshold-rp bps ;]

 [reg-sup-timeout secs ;]

 [probe-period secs ;]

 [static-rp grp-address masklen len rp-address ;]

 [bsr-holdtime secs ;]

 [wholepkt-checksum ;]

 [rp-switch-immediate ;]

 [dr-switch-immediate ;]

 [bsr (off | no) | (address | on | yes) [{

 [priority pri ;]

 [bsr-period secs ;]

 }] ;]

 [crp (off | no) | (address | on | yes) [{

 [priority pri ;]

 [crp-holdtime secs ;]

 [crp-adv-period crp-adv-periodsecs ;]

 [group {

 [group-address [priority pri] ;]

 [group-address mask mask [priority pri] ;

 [group-address masklen length [priority pri

] ;]

 [all [priority pri] ;]

 [host host [priority pri] ;]

 } ;]

 }] ;]

 interface interface-list [{

 [(enable | disable) ;]

 [hello-interval sec ;]

 [hello-holdtime sec ;]

 [hello-priority pri ;]

 [assert-holdtime sec ;]

 [jp-interval sec ;]
 [jp-holdtime sec ;]

 [boundary ;]

 }] ;

 };

 };

More detailed information on PIM commands can be found on page 376 of the Command
Reference Guide.

21.3 Defaults
PIM must be configured to run on at least one interface.
106 9/26/02

Configuring GateD, V.9.3.2
 pim on {

 traceoptions none;

 mrt-spt-mult 14;

 hello-interval 30;

 hello-holdtime 105;

 hello-priority 0;

 mrt-period 15;

 mrt-stale-mult 14;

 assert-holdtime 180;

 jp-interval 60;

 jp-holdtime 210;

 sparse "sm0" {

 interface all {

 hello-interval 30;

 hello-holdtime 105;

 hello-priority 0;

 assert-holdtime 180;

 jp-interval 60;

 jp-holdtime 210;

 };

 crp no;

 bsr no;

 threshold 1000

 threshold-dr 1000

 threshold-rp 1000

 reg-sup-timeout 60

 probe-period 5

 bsr-holdtime 130

 };

 };

21.4 PIM Tracing Options
See “Chapter 4 Trace Statements” on page 15 for generic traceoptions, and refer to below
for PIM-specific tracing options.

Packet tracing options (which may be modified with detail, send or recv):

packets - Trace all PIM packets.
hello - Trace PIM router hello packets.
9/26/02 107

Protocol Independent Multicast (PIM), GateD V.9.3.2
register - Trace PIM register and register stop packets.
bootstrap - Trace PIM bootstrap packets.
jp - Trace PIM Join/Prune packets.
assert - Trace PIM assert packets.
debug - Trace state information that is mostly of use to developers.

21.5 Examples

Example 1

The following example configures a PIM-SM component that runs on interfaces fxp0 and
fxp1, and uses OSPF to determine the unicast topology.

 ospf yes {

 defaults {

 ribs unicast multicast;

 };

 backbone {

 interface fxp0 fxp1;

 priority 1 ;

 auth simple “mypw” ;

 };

 };

 pim yes {

 sparse "smo" {

 interface fxp0 {

 enable;

 };

 interface fxp1 {

 enable;

 };

 };

 };

Example 2

This is a sample use of PIM-SMv2 over RIP. On interfaces qe0, qe1, qe2, and qe3 IGMP is also
running.

 traceoptions "/var/tmp/gated.log" replace all ;

 igmp yes {

 interface le0 { disable; };

 interface qe0 { enable; };
108 9/26/02

Configuring GateD, V.9.3.2
 interface qe1 { enable; };

 interface qe2 { enable; };

 interface qe3 { enable; };

 };

 pim yes {

 traceoptions "/var/tmp/gated.log" replace packets route;

 sparse "sm0" {

 interface le0 { disable; };

 interface qe0 { enable; };

 interface qe1 { enable; };

 interface qe2 { enable; };

 interface qe3 { enable; };

 bsr qe0 {

 priority 1;

 };

 crp qe0;

 };

 };

 rip yes {

 traceoptions none ;

 interface le0 noripin noripout ;

 interface qe ripout ripin version 2;

 };

 static {

 default gateway 198.32.4.1 preference 20 retain; # router

 10.2.0.0 mask 255.255.255.0 gateway 10.1.0.3 preference 50 multicast
unicast;

 };

 import proto rip {

 all unicast multicast;

 };

 export proto rip {

 proto rip {

 all restrict;

 };

 };
9/26/02 109

Protocol Independent Multicast (PIM), GateD V.9.3.2
110 9/26/02

Chapter 22
Multi-Protocol - Border Gateway Protocol (MPBGP)
22.1 MPBGP Overview

The Multi-Protocol Border Gateway Protocol (MPBGP) is a set of extensions to BGP-4 to make
the protocol capable of carrying routing information for IPv6 and Multicast routes. These
extensions are backward compatible, making it possible for BGP-4 routers to interoperate
with MPBGP routers. BGP is an exterior routing (or inter-domain routing) protocol used for
exchanging routing information between autonomous systems. (See “Chapter 14 Border
Gateway Protocol (BGP)” on page 61 for more information about BGP.) MPBGP will support
the use of multi-protocol extensions for BGP-4, IPv6 and Multicast.

For more details on the multiple RIBs and the multicast RIB, see “Chapter 9 Multiple Routing
Information Bases (RIBs)” on page 33.

MPBGP adds two new attributes, Multiprotocol Reachable NLRI (MP_REACH_NLRI) and Multi-
protocol Unreachable NLRI (MP_UNREACH_NLRI). MP_REACH_NLRI carries the set of reach-
able destinations with next hop information. MP_UNREACH_NLRI contains the set of
unreachable destinations.

Capability Advertisement is used to determine whether the Multiprotocol Extensions can be
used with a particular peer. If a peer is found not to support these extensions, the MPBGP
router drops the peering session.

22.2 MPBGP Syntax
Note: You must specify the AS and routerid at the top of your configuration file in order for
BGP to work.

 mpbgp (on | off)

 {

 [clusterid host-id ;]

 [defaultmetric metric ;]

 [discard-nonprefixed-confederations |

 ignore-nonprefixed-confederations]

 [open-on-accept ;]

 [preference mpbgppreference ;]

 [traceoptions trace_options ;]

 group type

 (external peeras autonomoussystem

 | internal peeras autonomoussystem

 | routing peeras autonomoussystem proto protocol)
9/26/02 111

Multi-Protocol - Border Gateway Protocol (MPBGP), GateD V.9.3.2
 [ascount count] # external only

 [comm community_values]

 [confed]

 [gateway gateway_ip_address]

 [holdtime time]

 [ignorefirstashop] # external only

 [interface interface_list] # routing only

 [keep (all | none)]

 [keepalivesalways]

 [localas autonomous_system] # external only

 [localtcp local_address]

 [localv4addr ipv4_address]

 [localv6addr ipv6_address]

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself] # external only

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time]

 [passive]

 [preference grouppreference]

 [preference2 grouppreference2]

 [recvbuffer buffer_size]
 [reflector-client [no-client-reflect]] # internal or

 # routing only

 [remotev4addr ipv4_address]

 [remotev6addr ipv6_address]

 [routetopeer]

 [sendbuffer buffer_size]

 [setpref metric] # internal or routing only

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl] # routing only

 [caps { [v4u] | [v4m] | [v4um] | [v6u] | [v6m] | [v6um]

 | [no-caps] }]

 #

 # There can be zero or one "allow" clauses within

 # a peer group.

 #

 {

 [inet6] allow {
 all ;

 | host ipaddress ;
 | classful_network ;
 | network mask mask ;
 | network masklen masklennumber ;
112 9/26/02

Configuring GateD, V.9.3.2
 | network / masklennumber ;

 } ;
 #
 # There can be zero or more "peer" clauses within
 # a peer group.
 #

 peer host

 [ascount count]

 [gateway gateway]

 [holdtime time]

 [ignorefirstashop]

 [keep (all | none)]

 [keepalivesalways]

 [localtcp local_address]

 [localv4addr ipv4_address]

 [localv6addr ipv6_address]

 [logupdown]

 [med]

 [metricout metric]

 [nexthopself]

 [noaggregatorid]

 [nogendefault]

 [nov4asloop]

 [outdelay time]

 [passive]

 [preference peerpreference]

 [preference2 peerpreference2]

 [recvbuffer buffer_size]

 [remotev4addr ipv4_address]

 [remotev6addr ipv6_address]

 [routetopeer]

 [sendbuffer buffer_size]

 [showwarnings]

 [traceoptions trace_options]

 [ttl ttl]

 } ;
 #
 # There should be at least one "allow" or "peer"
 # clause within a "group type" statement.
 #

 } ;

 } ;

More detailed descriptions of these commands can be found on page 429 of the Command
Reference Guide.

22.3 MPBGP Configurable Options
See the following sections for more information about specific MPBGP options.
9/26/02 113

Multi-Protocol - Border Gateway Protocol (MPBGP), GateD V.9.3.2
22.3.1 Route Reflection
MPBGP supports route reflection for internal peer groups. When using route reflection, the
rule that a router may not readvertise routes from internal peers to other internal peers is
relaxed for some routers, called “route reflectors.” See “Route Reflection Overview and
Examples” on page 71 for more information about route reflection.

22.3.2 Weighted Route Damping
The basic idea of weighted route damping is to treat routes that are being announced and
withdrawn (flapping) at a rapid rate as unreachable. See “Weighted Route Damping Over-
view, Syntax, and Defaults” on page 73 for more information about weighted route damp-
ing.

22.3.3 Setpref/Local_Pref
The setpref option allows GateD to set the Local_Pref to reflect GateD’s own internal
preference for the route, as given by the global protocol preference value. Local_Pref
may be used by a BGP speaker to inform other BGP speakers in its own autonomous system
of the originating speaker's degree of preference for an advertised route. See “Setpref/
Local_Pref Overview” on page 75 for more information about setpref.

22.3.4 Communities and Extended Communities
The communities attribute allows the administrator of a routing domain to tag groups of
routes with a community tag. Using communities allows the administrator to limit the
routes that can be imported or exported. See “Communities Overview and Examples” on
page 77 for more information about communities.

22.3.5 Multi-Exit Discriminator
The Multi-Exit Discriminator, or MED, allows the administrator of a routing domain to
choose between various exits from a peering autonomous system (AS). See “Multi-Exit Dis-
criminator Overview and Examples” on page 79 for more information about Multi-Exit Dis-
criminator.

22.3.6 Confederations
A BGP Confederation is a collection of ASs that present themselves as a single AS to peers
outside of the confederation. See “Confederations” on page 80 for more information about
Confederations.
114 9/26/02

Chapter 23
Multicast Source Discovery Protocol (MSDP)
23.1 MSDP Overview

MSDP is intended to join administratively separate PIM-SM regions by distributing informa-
tion about multicast sources within each region. MSDP speakers peer over TCP connections
and announce or forward information about sources and the groups to which they are multi-
casting. When a rendezvous point in one PIM-SM domain learns (via MSDP) of a multicast
source in another PIM-SM domain, it then attempts to join toward the multicast tree rooted
at the source.

MSDP is designed to work very closely with PIM-SM. In order for a PIM-SM component to learn
of sources from MSDP, and in order for MSDP to propagate information about sources for the
PIM-SM domain in which it resides, a PIM-SM component must be explicitly associated with
MSDP.

23.2 MSDP Syntax
 msdp (on | off) {
 [traceoptions trace_options ;]
 [peer local_host remote_host mesh id peeras asnum ;]
 [connect-retry-period sec ;]
 [keepalive-period sec ;]
 [peer-holdtime sec ;]
 [sa-cache-timeout sec ;]
 [sa-holddown sec ;]
 [sa-filter [import | export] source_ip masklen length group_ip
 masklen length ;]
 [pim-filter source_ip masklen length group_ip masklen length ;]
 [static-rpf-peer peer_ip rp_addr_ip ;]
 [default-rpf-peer peer_ip ;]
 [msdp-draft-6-compat ;]
 } ;

More detailed descriptions of these commands can be found on page 505 of the Command
Reference Guide.
9/26/02 115

Multicast Source Discovery Protocol (MSDP), GateD V.9.3.2
23.3 Sample MSDP Configurations

23.3.1 MSDP and PIM-SM

Example 1

The following configuration specifies the local end, 192.0.2.1, and the remote end,
192.0.2.2, of an MSDP peering session. The statement “assoc-msdp” within the PIM clause
associates the PIM-SM component with the MSDP component.

 msdp on {

 peer 192.0.2.1 192.0.2.2;

 };

 pim on {

 sparse "sm0" {

 assoc-msdp;

 static-rp 224.0.0.0 masklen 4 192.0.2.1;

 interface fxp0 {

 boundary;

 };

 interface fxp1;

 };

 };

Example 2

In the following configuration, peers of the MSDP peering session, 192.0.2.1 and 192.0.2.2,
belong to mesh group 1. If the router 192.0.2.1 receives an SA-Advertisement message
from 192.0.2.2, then it must forward the message to all other peers, 192.0.2.3 and
192.0.2.4. If the router receives an SA-Advertisement message from 192.0.2.3 or
192.0.2.4, then it must forward the message to 192.0.2.2.

 msdp on {

 peer 192.0.2.1 192.0.2.2 mesh 1;

 peer 192.0.2.1 192.0.2.3;

 peer 192.0.2.1 192.0.2.4;

 };

 pim on {

 sparse "sm0" {

 assoc-msdp;

 static-rp 224.0.0.0 masklen 4 192.0.2.1;

 interface fxp0 {

 boundary;

 };
116 9/26/02

Configuring GateD, V.9.3.2
 interface fxp1 fxp2;

 };

 };

Example 3

In the following configuration, two peering sessions are configured. An export filter is con-
figured such that if any (S, G) pairs received in SA messages match the filter (192.0.2.0/24,
226.1.0.0/16), then the (S, G) pairs will not be forwarded to other peers.

 msdp on {

 peer 192.0.2.1 192.0.2.2;

 peer 192.0.2.1 192.0.2.3;

 sa-filter export 192.0.2.0 masklen 24 226.1.0.0 masklen 16;

 };

 pim on {

 sparse "sm0" {

 assoc-msdp;

 static-rp 224.0.0.0 masklen 4 192.0.2.1;

 interface fxp0 {

 boundary;

 };

 interface fxp1;

 };

 };

23.3.2 MSDP Only

Example 1

In the following configuration, 192.0.2.1 is configured to peer with both 192.0.2.2 and
192.0.2.3. The PIM-SM is configured off; the MSDP component is not associated with the
PIM-SM component.

 msdp on {

 peer 192.0.2.1 192.0.2.2;

 peer 192.0.2.1 192.0.2.3;

 };

 pim off ;

23.4 Defaults
 msdp on {

 keepalive-period 75;

 peer-holdtime 90;
9/26/02 117

Multicast Source Discovery Protocol (MSDP), GateD V.9.3.2
 sa-cache-timeout 210;

 sa-holddown 30;

 connect-retry-period 30;

 };
118 9/26/02

Chapter 24
Internet Group Management Protocol (IGMP)
24.1 IGMP Overview

IGMP was designed for hosts on multi-access networks to inform locally-attached routers of
their multicast group memberships. Hosts inform routers of the groups of which they are
members by multicasting IGMP Group Membership Reports. Once multicast routers listen for
these reports, they can exchange group membership information with other multicast rout-
ers. This reporting system allows distribution trees to be formed to deliver multicast data-
grams. The original version of IGMP was defined in RFC 1112, Host Extensions for IP
Multicasting. Extensions to IGMP, known as IGMP version 2, include explicit Leave messages
for faster pruning and are defined in RFC 2236. GateD implements only IGMP version 2,
which includes interoperability with version 1 hosts. The original version of IGMP can be
found at:

http://www.ietf.org/rfc/rfc1112.txt

IGMP version 2 is described in:

http://www.ietf.org/rfc/rfc2236.txt

24.2 IGMP Syntax
 igmp (on | off) [{

 [interface interface_list [{

 [enable ; | disable ;]

 [nosend ;]

 [query-interval sec ;]

 [max-response-time sec ;]

 [last-mem-query-intvl sec ;]

 [robustness value ;]

 } ;]

 [traceoptions trace_options ;]

 [query-interval sec ;]

 [max-response-time sec ;]

 [last-mem-query-intvl sec ;]

 [robustness value ;]

 }] ;

More detailed descriptions of these commands can be found on page 521 of the Command
Reference Guide.
9/26/02 119

http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc2236.txt

Internet Group Management Protocol (IGMP), GateD V.9.3.2
24.3 Sample IGMP Configurations

24.3.1 Example 1: IGMP and DVMRP
This is a simple IGMP and DVMRP configuration with passive interfaces.

 interfaces {

 interface all passive;

 };

 igmp yes;

 dvmrp yes;

24.3.2 Example 2: IGMP and DVMRP
The following example enables IGMP and DVMRP on interfaces le0 and le1 only.

 igmp yes {

 interface le0 { enable; };

 interface le1 { enable; };

 };

 dvmrp yes {

 interface le0 { enable; };

 interface le1 { enable; };

 };

24.3.3 Example 3: IGMP Only
This example will enable IGMP while leaving all of the fxp interfaces with a default robust-
ness of 2 except fxp2. The fxp2 interface will have a robustness of 3.

 igmp yes {

 interface fxp {

 enable;

 };

 interface fxp2 {

 enable;

 robustness 3;

 };

 };

24.3.4 Example 4: IGMP Only
The following configuration enables IGMP on all fxp interfaces. The interface fxp2 will
have a robustness of 4 while all other fxp interfaces will have a robustness of 3.

 igmp yes {

 interface fxp {

 enable;

 };

 interface fxp2 {

 enable;

 robustness 4;

 };
120 9/26/02

Configuring GateD, V.9.3.2
 robustness 3;

 };

24.3.5 Example 5: IGMP Only
In the following configuration, IGMP is enabled on all interfaces.

 interfaces {

 interface all passive;

 };

 igmp yes;

24.3.6 Example 6: IGMP Only
In the following configuration, IGMP is enabled only on interfaces qe0 and qe2.

 igmp yes {

 interface le0 { disable; };

 interface qe0 { enable; };

 interface qe1 { enable; };

 interface qe2 { disable; };

 interface qe3 { disable; };

 };

24.3.7 Example 7: Per Interface Configuration
The following configuration illustrates how to configure interface-specific options.

 igmp yes {

 interface all {

 enable;

 query-interval 135;

 last-mem-query-intvl 2;

 max-response-time 10;

 robustness 3;

 };

 interface fxp0 {

 enable;

 query-interval 120;

 last-mem-query-intvl 3;

 }

 interface fxp2 {

 disable;

 }

 };

Given the configuration above, assume the router has three interfaces fxp0, fxp1, and
fxp2. Interface fxp1 will have the following values:
9/26/02 121

Internet Group Management Protocol (IGMP), GateD V.9.3.2
 query-interval 135;

 last-mem-query-intvl 2;

 max-response-time 10;

 robustness 3;

Interface fxp0 will have the following values:

 query-interval 120;

 last-mem-query-intvl 3;

 max-response-time 10;

 robustness 3;

and fxp2 will be disabled.

24.4 Defaults
 igmp yes {

 interface all {

 enable;

 query-interval 125;

 last-mem-query-intvl 1;

 max-response-time 10;

 robustness 2;

 };

 traceoptions none;

 query-interval 125;

 max-response-time 10;

 last-mem-query-intvl 1;

 robustness 2;

 };

 The configuration above is equivalent to:

 igmp yes {

 interface all {

 enable;

 query-interval 125;

 last-mem-query-intvl 1;

 max-response-time 10;

 robustness 2;

 };

 traceoptions none;

 };
122 9/26/02

Chapter 25
Multicast Statement
25.1 Multicast Statement Overview

The multicast statement is used to set interface-specific options such as time-to-live (TTL)
thresholds and admin scope boundaries.

25.2 Multicast Statement Syntax
Scoped boundaries are configured by commands inside the multicast {} block. The syntax
for the multicast block is:

multicast {

 interface interface_list [threshold number] ;

 boundary group-address

 [(mask mask) | (masklen number)] interface_list;

} ;

More detailed descriptions of these commands can be found on page 539 of the GateD Com-
mand Reference Guide.

25.3 Multicast Sample Configurations
 multicast {

 interface le1 threshold 16

 };

The example above configures interface le1 with a TTL threshold of 16.

 multicast {

 interface le1 threshold 16

 boundary 225.255.0.0 masklen 16 le1;

 };

The example above configures interface le1 with a TTL threshold of 16, and sets a boundary
for 225.255/16 on it.

 multicast {

 interface le1 threshold 16

 };
9/26/02 123

Multicast Statement, GateD V.9.3.2
The example above configures interface le1 with a TTL threshold of 16, and forces GateD
to act as if downstream members of group 239.1.2.3 exist on that interface.

25.4 Multicast Statement Defaults
The defaults for multicast are on a per-interface basis. The default value for TTL is 1.
124 9/26/02

Chapter 26
Mstatic Statement
26.1 Mstatic Statement Overview

The mstatic statement is used to configure multicast group membership information on
interfaces where it is either not desired to run IGMP, or IGMP would not be able to know of a
group member. Note that it does not cause GateD to join the indicated group(s) using, for
example, IGMP. Rather, it causes GateD to act as if group members are present.

26.2 Mstatic Statement Syntax
 mstatic yes | no {

 interface interface_list {

 [enable | disable ;]

 [join group-address ;]

 } ;

 } ;

More detailed descriptions of these commands can be found on page 543 of the Command
Reference Guide.

26.3 Mstatic Sample Configurations
 mstatic yes {

 interface fxp0 {

 join 224.1.1.1 ;

 } ;

 interface fxp1 {

 join 224.1.1.1 ;

 join 225.1.1.1 ;

 } ;

 };

The example above configures interface fxp0 with membership information for group
224.1.1.1 and interface fxp1 with membership information for groups 224.1.1.1 and
225.1.1.1.
9/26/02 125

Mstatic Statement, GateD V.9.3.2
26.4 Mstatic Statement Defaults
The default for mstatic is that no group membership is configured.
126 9/26/02

Chapter 27
Routing Information Protocol, next generation (RIPng)
27.1 RIPng Overview

Routing Information Protocol, next generation (RIPng) is an implementation of a distance-
vector, or Bellman-Ford, routing protocol for local networks. RIPng is based off the RIP pro-
tocol and inherits the limitations and constraints that are in RIP.

A router running RIPng sends an update to its neighbor routers every 30 seconds. Each
update contains paired values, where each pair consists of an IPv6 network address and an
integer distance to that network. RIPng uses a hop count metric to measure the distance to
a destination. In the RIPng metric, a router advertises directly connected networks at a
metric of 1 by default. Networks that are reachable through one other gateway are 2 hops,
and so on. Thus, the number of hops or hop count along a path from a given source to a
given destination refers to the number of gateways that a datagram would encounter along
that path. Using hop counts to calculate shortest paths does not always produce optimal
results. For example, a path with a hop count 3 that crosses three Ethernets may be sub-
stantially faster than a path with a hop count 2 that crosses two slow-speed serial lines. To
compensate for differences in technology, many routers advertise artificially high hop
counts for slow links.

At startup, RIPng issues a request for routing information and then listens for responses to
the request. If a system configured to supply RIPng hears the request, it responds with a
response packet based on information in its routing database. The response packet contains
destination network addresses and the routing metric for each destination.

When a RIPng response packet is received, the routing daemon takes the information and
rebuilds the routing database, adding new routes and "better" (lower metric) routes to des-
tinations already listed in the database. RIPng also deletes routes from the database if the
next router to that destination reports that the route contains more than 15 hops, or if the
route is deleted. All routes through a gateway are deleted if no updates are received from
that gateway for a specified time period. In general, routing updates are issued every 30
seconds. In many implementations, if a gateway is not heard from for 180 seconds, all
routes from that gateway are deleted from the routing database. This 180-second interval
also applies to deletion of specific routes.

27.2 RIPng Syntax
ripng (on | off) [{

 preference ripngpreference ;

 defaultmetric metric ;

 expire-time expire_time ;
9/26/02 127

Routing Information Protocol, next generation (RIPng), GateD V.9.3.2
 update-time update_time ;

 interface interface_list

 [noripin] | [ripin]

 [noripout] | [ripout]

 [metricin ripngmetric] | [metricout ripngmetric];

 traceoptions trace_options ;

 }] ;

For more detailed information on these commands, see “Chapter 23 Routing Information
Protocol, next generation (RIPng)” on page 551 of the Command Reference Guide.

27.3 RIPng Defaults
 ripng on [{

 preference 100 ;

 defaultmetric 1 ;

 update-time 30 ;

 expire-time 180 ;

 interface interface_list ripin ripout metricin ripngmetric metricout

 0 ;

 traceoptions trace_options ;

 }] ;

27.4 RIPng Sample Configurations

27.4.1 RIPng on All Interfaces
The following configuration turns on RIPng on all interfaces with default settings.

 ripng yes ;

27.4.2 RIPng on Two Interfaces
The following configuration turns on RIPng on two specific interfaces only.

 ripng yes {

 interface eth0 ripin ripout ;

 interface eth1 ripin ripout ;

 } ;
128 9/26/02

Chapter 28
Route Filtering
28.1 Route Filtering Overview

Routes are filtered by specifying configuration language that will match a certain set of
routes by destination, or by destination and mask. Among other places, route filters are
used in martians, and in import and export statements.

The action taken when no match is found is dependent on the context. For instance, import
and export route filters assume an all restrict; at the end of a list. (See “Chapter 31
Route Importation” on page 137 and “Chapter 32 Route Exportation” on page 145 for more
information about import and export.)

A route will match the most specific filter that applies. Specifying more than one filter with
the same destination, mask and modifiers will generate an error.

28.2 Route Filtering Syntax
Examples of all the possible formats for a route filter follow.

 network [(mask mask) | (masklen number)]

 [exact | refines | (between lower and upper)]

 [inet6 | inet] all [exact | refines | (between lower and upper)]

 [inet6 | inet] default

 host [inet6 | inet] host

More detailed descriptions of these commands can be found on page 571 in the GateD
Command Reference Guide.

Not all of these formats are available in all places. For instance, the host and default for-
mats are not valid for martians.

Certain filter contexts (such as within the BGP import and export statements) allow filters
for both IPv4 (inet) and IPv6 (inet6) addresses to be defined. The keywords inet and
inet6 are used with the all, default, and host filter types to specify the address type
intended. In a context that allows both address families, not specifying inet or inet6 with
all or default causes a filter for each address family to be defined.

28.3 Route Filtering Defaults
The default action for filter matching when no filters are present is context sensitive.

If a network filter is specified without a modifier (exact, refines, or between), the effec-
tive default is exact and restrict. All matching addresses with mask length greater than
or equal to the configured mask are matched.
9/26/02 129

Route Filtering, GateD V.9.3.2
28.4 Route Filtering Examples

Example 1

The following example shows how to set up a route filter for BGP-import that allows all
networks with a masklen less than 19 to pass.

 import proto bgp autonomoussystem 12345 {

 0.0.0.0 between 0 and 18;

 };

Example 2

If MPBGP is configured, the following imports all IPv4 and IPv6 routes from as 42:

 import proto bgp as 42 {

 all ;

 } ;
130 9/26/02

Chapter 29
Matching AS Paths
29.1 AS Path Overview

An AS path includes a list of autonomous systems that routing information has passed
through to get to a specified router and an indicator of the origin of this route. The AS path
is used to prevent routing loops in BGP.

This routing information can be used to prefer one path to a destination network over
another. The primary method for preferring a route with GateD is to specify a list of filters
to be applied to AS paths when importing and exporting routes.

Each autonomous system through which a route passes prepends its AS number to the begin-
ning of the AS path.

AS path regular expressions are defined in RFC1164, Section 4.2. For more information
about RFC1164, see:

http://www.ietf.org/rfc/rfc1164.txt

29.2 Matching AS Path Syntax
An AS path is matched using the following syntax.

 aspath “(aspath_regexp)”

 origin (any | igp | egp | [incomplete)

More detailed descriptions of these commands can be found on page 583 of the Command
Reference Guide.

29.3 AS Path Regular Expressions
GateD includes a powerful implementation of AS path regular expressions. The entire AS
path regular expression must be contained within parentheses. These parentheses also
have meaning within the language. Left parentheses match the beginning of the AS path.
Right parentheses match the end of the AS path. The alphabet (set of valid members) is the
valid range of AS numbers, or more specifically, {1 ... 65535}. Also, GateD supports the fol-
lowing “wildcards” or expressions that can be used to build a regular expression:

. - (period) represents any valid member of the alphabet.

* - (asterisk) matches zero or more of the preceding element/expression.

+ - (plus sign) matches one or more of the preceding element/expression.

? - (question mark) matches zero or one occurrence of the preceding element/expression.
9/26/02 131

ftp://www.ietf.org/rfc/rfc1164.txt

Matching AS Paths, GateD V.9.3.2
Binary operators:

“ “ (AND) - any sequence of elements and/or expressions separated by a space (“ “).

“|” (OR) - any sequence of elements and/or expressions separated by the vertical line
symbol (“|”).

The symbols “[]” are used to delimit a set of AS numbers. The set may be a list of AS num-
bers separated by a space or a range of AS numbers separated by a dash (-). If the entire
list of members is prefixed with a “^”, then the valid members are those not listed in the
set. (Because a null string or empty string is not an instance in the alphabet, AS numbers
such as [^808] will not match an empty string.) Examples of AS path regular expressions
follow:

Match any single AS number as the AS path:

(.)

Match all AS paths coming from a given AS that start with 808:

(808 .*)

Match all paths that do not end with the given AS numbers but must have at least one AS:

(.* [^808 809])

Match a path that has only valid exterior AS numbers:

([1-64999]+)

Match 305 808 and exactly one other AS number other than 100:

(305 808 [^100])

Match 305 808 and any other AS number except 100 or no additional AS. That is, match
either 305 808 as the complete path or 305 808 x, where x is any integer other than 100:

(305 808 [^100]?)

Match either 808 or 305 with no additional AS numbers in the path:

(305|808)

To exclude a certain AS from an arbitrary path:

(.* 65535 .*)
132 9/26/02

Chapter 30
BGP Communities
30.1 BGP Communities Overview
BGP updates carry a number of path attributes. Some of these, like the AS_PATH, are manda-
tory and appear in every update message sent. Others are optional, and may or may not appear
in any given update. Of the optional attributes, two can be specified arbitrarily by administra-
tors to ease configuration. These two attributes are “communities” and “extended communi-
ties.” Both of these attributes operate by “coloring” routes received in updates where these
attributes are present; every router keeps track of the set of communities and extended com-
munities with which a route was learned. The particular communities (or extended communi-
ties) with which a route was learned can be used to indicate that a particular set of policies
should be applied to those routes.

Note: EXTENDED COMMUNITIES IS AN EXPERIMENTAL AND UNSUPPORTED OPTION. GATED V.9.3.2
CURRENTLY SUPPORTS THE DRAFT-IETF-IDR-BGP-EXT-COMMUNITIES-00 VERSION OF EXTENDED
COMMUNITIES.

30.2 BGP Communities and Extended Communities Configurations
The following configuration causes all routes learned from BGP peers in AS 65532 with a com-
munity of 100:140 to be installed with a GateD preference of 140, those learned with a commu-
nity of 100:150 to be installed with a GateD preference of 150, and all other routes learned
from BGP peers in AS 65532 to be installed with the default GateD preference for BGP (170).

 import proto bgp as 65532 comm { comm-split 100 140; } {

 all preference 140;

 };

 import proto bgp as 65532 comm { comm-split 100 150; } {

 all preference 150;

 };

 import proto bgp as 65532 {

 all;

 };

The following causes GateD to export to AS 65532 with the community 100:140 all routes
learned from peers in AS 65533, all routes learned from peers in AS 65534 with the community
100:150, and all routes learned from peers in AS 65535 with no additional communities.

 export proto bgp as 65532 comm-add { comm-split 100 140; } {

 proto bgp as 65533 {
9/26/02 133

BGP Communities, GateD V.9.3.2
 all;

 };

 };

 export proto bgp as 65532 comm-add { comm-split 100 150; } {

 proto bgp as 65534 {

 all;

 };

 };

 export proto bgp as 65532 {

 proto bgp as 65535 {

 all;

 };

 };

30.3 Syntax

30.3.1 BGP Communities Syntax
The syntax of comm is as follows:

 comm {

 community_list ;

 }

 # comm-add and comm-delete are used to add and delete communities.

 comm-add {

 community_list ;

 }

 comm-delete {

 community_list ;

 }
More detailed descriptions of these commands can be found on page 587 of the Command Ref-
erence Guide.

30.3.2 BGP Extended Communities Syntax
The syntax of ext-comm is:

 ext-comm {

 extended_community_list ;

 }

The syntax of ext-comm-add is:

 ext-comm-add {

 extended_community_list ;

 }
134 9/26/02

Configuring GateD, V.9.3.2
The syntax of ext-comm-delete is:

 ext-comm-delete

 extended_community_list ;

 }

More detailed descriptions of these commands can be found on page 587 of the Command Ref-
erence Guide.
9/26/02 135

BGP Communities, GateD V.9.3.2
136 9/26/02

Chapter 31
Route Importation
31.1 Route Importation Overview

import statements control the importation of routes from routing protocols and the instal-
lation of the routes in GateD’s Routing Information Base (RIB). The format of an import
statement varies depending on the source protocol. A given import statement applies to all
routes that match the specified protocol and any other item specified on the import state-
ment, such as tag, as, interface, gateway, and so on.

31.1.1 Route Filters
All the formats allow route filters as shown below. See “Chapter 28 Route Filtering” on
page 129 for a detailed explanation of how they work. When no route filtering is specified
(i.e., when restrict is specified on the first line of a statement), all routes from the spec-
ified source with any specified as, tag, and so on, will match that statement. If any filters
are specified, only routes that also match the specified filters will be imported. Put differ-
ently, if any filters are specified, an all restrict is assumed at the end of the list.

31.1.2 Importing Routes into Different RIBS
Normally, routes from unicast routing protocols are only imported into the unicast RIB.
Routes from multicast routing protocols are only imported into the multicast RIB. However,
some multicast routing protocols do not maintain their own routing table, but rely on a uni-
cast routing protocol instead. To support these protocols, unicast routes must be imported
into the multicast RIB. If the routes are not imported, only interface routes will be available
to those multicast protocols.

Because MPBGP is able to tag routes to indicate to which RIBs they apply, no additional con-
figuration is required for BGP routes.

The RIP and Redirect protocols, however, do not tag routes as being for a specific
Subsequent Address Family Indicator (SAFI). Hence, GateD must be configured to import RIP
or Redirect routes into the multicast RIB. See “Examples of Importation into Multicast RIBs”
on page 142 to see the exact syntax of the import protocol statement. One or more RIB
names may be specified (where multicast and unicast appear) as in the example below:

 import proto rip {

 all;

 198.0.0.0 masklen 8 refines multicast unicast;

 };
9/26/02 137

Route Importation, GateD V.9.3.2
This example keeps the normal behavior of allowing all RIP routes in the unicast RIB, but
also imports all routes falling under 198/8 into the multicast RIB. Additional examples are
included in “Examples of Importation into Multicast RIBs” on page 142.

To import OSPF routes into the multicast RIB, you currently must import all OSPF routes as
follows:

 ospf yes {

 defaults {

 ribs unicast multicast;

 ...

 };

 ...

 };

You cannot import OSPF routes into only the multicast RIB. Attempting to do so will be
flagged as a configuration error.

31.1.3 Import Inheritance
The following parameters can be specified at multiple places within a given import
statement:

• fromribs
• toribs
• restrict
• preference

In the case of restrict, placing it on an import proto statement restricts importation of
all routes that match the import proto statement. Including it on a route_filter
restricts importation of all routes that match that route filter.

In the case of preference, toribs, and fromribs, the most specific instances of these
values are assigned to a route. Thus, any such value specified on an import proto state-
ment is used only if the route_filter that matches a route does not specify a value. The
value specified on the most specific matching route_filter is used. If neither the import
proto statement nor the matching route_filter specifies a value, then the default value
for the protocol is used.

31.2 Route Importation Syntax

 import proto bgp

 (as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))

 [comm { communities_list }]

 [ext-comm { extended_communities_list }]

 [preference preference]

 [fromribs riblist]

 [[toribs] riblist]
138 9/26/02

Configuring GateD, V.9.3.2
 { [route_filter

 [restrict |

 ([preference preference]

 [fromribs riblist]

 [[toribs] riblist])] ;]

 };

 import proto bgp

 (as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))

 [comm { communities_list }]

 [ext-comm { extended_communities_list }]

 restrict;

 import proto ospfase

 [tag tagvalue]

 [preference preference]

 { [route_filter

 [restrict |

 ([preference preference]

 [[toribs] riblist])] ;]

 };

 import proto ospfase

 [tag tagvalue] restrict ;

 import proto rip

 [tag tagvalue | interface interface_list | gateway gateway_list]

 [preference preference] [[toribs] riblist]

 { [route_filter

 [restrict |

 ([preference preference]

 [[toribs] riblist])] ;]

 };

 import proto rip

 [tag tagvalue | interface interface_list | gateway gateway_list]

 restrict ;

 import proto ripng

 [tag tagvalue | interface interface_list | gateway gateway_list]
9/26/02 139

Route Importation, GateD V.9.3.2
 [preference preference] [[toribs] riblist]

 { [route_filter

 [restrict |

 ([preference preference]

 [[toribs] riblist])] ;]

 };

 import proto ripng

 [tag tagvalue | interface interface_list | gateway gateway_list]

 restrict ;

 import proto redirect

 [interface interface_list | gateway gateway_list]

 [preference preference] [[toribs] riblist]

 { [route_filter

 [restrict |

 ([preference preference]

 [[toribs] riblist])] ;]

 };

 import proto redirect

 [interface interface_list | gateway gateway_list] restrict ;

route_filter:

route_filter specifies a list of matching filters and the corresponding action for each fil-
ter. For more information see “Chapter 28 Route Filtering” on page 129 in Configuring
GateD.

communities_list and extended_communities_list:

communities_list specifies the set of communities that are to be matched.
extended_communities_list specifies the set of extended communities to be matched.
For more information, see “Chapter 30 BGP Communities” on page 133 in Configuring
GateD.

31.3 Route Importation Defaults
 import proto bgp aspath “(.*)” origin any

 { all ; } ;

 import proto ospfase

 { all ; } ;

 import proto rip

 { all ; } ;

 import proto ripng
140 9/26/02

Configuring GateD, V.9.3.2
 { inet6 all ; } ;

 import proto redirect

 { all ; } ;

31.4 Route Importation Examples

Example 1

The following example will import only routes from AS 203 that are stamped with commu-
nity 99:

 import proto bgp as 203
 comm {
 comm-split 203 99
 }
 {
 all;
 };

Example 2

The following example will import only routes that do not originate from AS 690:

 import proto bgp aspath “(.* 690)” origin any {
 all restrict;
 };
 import proto bgp aspath “(.*)” origin any {
 all;
 };

Example 3

The following example will import all IPv4 routes from AS 200:

 import proto bgp as 200 {
 inet all ;
 } ;

Example 4

The following example will import all IPv6 routes from AS 65000:

 import proto bgp as 65000 {
 inet6 all ;

 } ;

Example 5

The following example will import all IPv6 and IPv4 routes from AS 65000:

 import proto bgp as 65000 {
 all ;
9/26/02 141

Route Importation, GateD V.9.3.2
 } ;

Example 6

The following example will import all RIP routes:

 import proto rip {
 all ;

 } ;

Example 7

The following example will import RIP routes based on tags:

 import proto rip tag 230 {
 all ;

 } ;

31.4.1 Examples of Importation into Multicast RIBs

Example 1

Example 1 keeps the normal behavior of allowing all RIP routes in the unicast RIB, but also
imports all routes falling under 198/8 into the multicast RIB.

 import proto rip {

 all;

 198.0.0.0 masklen 8 refines multicast unicast;

 };

Example 2

Example 2 imports all of the RIP routes into the multicast RIB (as well as the usual unicast
RIB).

 import proto rip {

 all multicast unicast;

 };

Example 3

Example 3 imports all of the RIP routes into the unicast and multicast RIBs.

 import proto rip unicast multicast {

 all ;

 };
142 9/26/02

Configuring GateD, V.9.3.2
Example 4

Example 4 inserts all of the OSPF routes into the unicast and multicast RIBs.

 ospf yes {

 defaults {

 ribs unicast multicast;

 ...

 };

 ...

 };
9/26/02 143

Route Importation, GateD V.9.3.2
144 9/26/02

Chapter 32
Route Exportation
32.1 Route Exportation Overview

The import statement controls which routes that are received from other systems are used
by GateD, and the export statement controls which routes are advertised by GateD to other
systems. Like the import statement, the syntax of the export statement varies slightly per
protocol. The syntax of the export statement is similar to the syntax of the import state-
ment, and the meanings of many of the parameters are identical. The main difference
between the two is that while route importation is just controlled by source information,
route exportation is controlled by both destination and source.

The outer portion of a given export statement, the export target statement, specifies the
destination of the routing information you are controlling. The middle portion, the export
source statement, restricts the sources of importation that you wish to consider. The inner-
most portion is a route filter used to select particular routes.

The export command specifies the policy for dynamically advertising routes from GateD to
other systems. Any number of export commands can be given, provided that each export
target statement is unique.

The export target statement specifies by which protocol the route will be advertised and
how it will be advertised. It can limit to which neighbors of a given protocol the routes are
sent and modify a route’s attributes before it is sent. Obviously, the route attributes that
exist or can be set are dependant on the outgoing protocol. (For example, you cannot set an
AS Path for an OSPF route.) Only one export target statement can be given per export
command.

The union of all export source statements represents a filter that determines the routes
that will be exported. The filter will match in order and is succeeded by an implied restric-
tion, so anything not matched by one of the export source statements will not be adver-
tised. As a result, the following two statements are identical:

export proto rip restrict;
export proto rip { };

The same statements about order and restriction apply to multiple instances of the export
command as a whole. So, if no export commands are given, then default behavior will
ensue; however, if even one export statement is given, then no other exporting will occur.

32.1.1 Export Inheritance
The following parameters can be specified at multiple places within a given export
statement:
9/26/02 145

Route Exportation, GateD V.9.3.2
• restrict
• metric

In the case of restrict, placing it on an export target statement restricts exportation of
all routes matching the export target statement. Including it on an export source
statement restricts exportation of all routes matching the export source statement.
Including it on a route_filter restricts exportation of all routes that match that route fil-
ter.

In the case of export metric, the most specific instance of a metric value is assigned to a
route. Thus, any metric value specified on an export target statement is used only if
neither the export source statement nor the route_filter that matches a route speci-
fies a value. The value of the most specific matching route_filter is used. If neither the
export target statement, the matching export source statement, nor the matching
route_filter specifies a metric value, then the default metric value for the protocol is
used.

32.2 Export Syntax
export target statements are one or more of the following:

export proto bgp as autonomous_system restrict ;

export proto bgp as autonomous_system

 [comm-add { communities_list }]

 [comm-delete { communities_list }]

 [ext-comm-add { extended_communities_list }]

 [ext-comm-del { extended_communities_list }]

 [metric metric] {

 export_source_statements

 } ;

export proto rip

 [interface interface_list | gateway gateway_list]

 restrict ;

export proto rip

 [tag tagvalue]

 [interface interface_list | gateway gateway_list]

 [metric metric] {

 export_source_statements

 };

export proto ripng

 [interface interface_list | gateway gateway_list]

 restrict ;

export proto ripng
146 9/26/02

Configuring GateD, V.9.3.2
 [tag tagvalue]

 [interface interface_list | gateway gateway_list]

 [metric metric] {

 export_source_statements

 };

export proto ospfase restrict ;

export proto ospfase [type type] [tag tagvalue] [metric metric] {

 export_source_statements

};

export proto ospfnssa restrict ;

export proto ospfnssa [type type] [tag tagvalue] [metric metric] {

 export_source_statements

};

export proto isis restrict ;

export proto isis [metric-type type] [level level] [metric metric] {

 export_source_statements

} ;

export_source_statements are one or more of the following:

 proto bgp (as autonomous_system) | (aspath aspath_regular_expression

 origin (any | igp | egp | incomplete))

 [comm communities_list]

 [ext-comm extended_communities_list]

 restrict;

 proto bgp (as autonomous_system) | (aspath aspath_regular_expression

 origin (any | igp | egp | incomplete))

 [comm communities_list]

 [ext-comm extended_communities_list]

 [noagg] [metric metric]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

 proto rip

 [tag tagvalue | interface interface_list | gateway gateway_list]
9/26/02 147

Route Exportation, GateD V.9.3.2
 restrict ;

 proto rip

 [interface interface_list | gateway gateway_list | tag tagvalue]

 [metric metric] [noagg]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

 proto ripng

 [tag tagvalue | interface interface_list | gateway gateway_list]

 restrict ;

 proto ripng

 [interface interface_list | gateway gateway_list | tag tagvalue]

 [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;

 proto ospf [type type] [tag tag] restrict ;

 proto ospf [type type] [tag tag] [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;

 proto ospfase [type type] [tag tag] restrict ;

 proto ospfase [type type] [tag tag] [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;

 proto direct [(interface interface_list)] restrict ;

 proto direct [(interface interface_list)]

 [noagg] [metric metric]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

 proto static [interface interface_list] restrict ;

 proto static [interface interface_list]

 [metric metric] [noagg]

 { [route_filter

 [fromribs riblist] [restrict | (metric metric)] ;] } ;

 proto kernel [interface interface_list] restrict ;

 proto kernel [interface interface_list] [metric metric] [noagg]

 { [route_filter [restrict | (metric metric)] ;] } ;
148 9/26/02

Configuring GateD, V.9.3.2
 proto isis [internal | external] restrict ;

 proto isis [internal | external]

 [noagg] [metric metric]

 { [route_filter [restrict | (metric metric)] ;] } ;

 proto aggregate restrict ;

 proto aggregate [noagg] [metric metric]

 { [route_filter [restrict | (metric metric)] ;] } ;

32.3 Export Defaults
 export proto rip {

 proto rip {

 all;

 };

 proto direct {

 all;

 };

 };

 export proto ripng {

 proto direct {

 all;

 };

 };

32.4 Export Examples

32.4.1 Exporting to BGP

Example 1

This example configures BGP to export all active BGP routes learned from AS 202 and three
static routes and any of their static subnets to BGP peers in AS 201.

Note: The default policy of exporting all 'direct' routes is no longer in effect if export pol-
icy is given.

 export proto bgp autonomoussystem 201 {

 proto bgp autonomoussystem 202 {

 all;

 };

 proto static {
9/26/02 149

Route Exportation, GateD V.9.3.2
 223.1.0/24;

 223.2.0/24;

 223.3.0/24;

 };

 };

Example 2

This example exports all IPv4 and IPv6 static routes and all routes learned from AS 202, to
AS 201 (assuming MPBGP is enabled).

 export proto bgp as 201 {

 proto bgp as 202 {

 all;

 };

 proto static {

 all ;

 } ;

 } ;

32.4.2 Exporting to RIP
This example configures all static and direct routes to be exported into the RIP protocol
with tag 2112.

Note: The default policy of exporting all 'direct' routes is no longer in effect if export pol-
icy is given.

 export proto rip tag 2112 {

 proto static {

 all;

 };

 proto direct {

 all;

 };

 };

32.4.3 Exporting to RIPng
This example configures all static and direct IPv6 routes to be exported into the RIPng pro-
tocol with tag 2112.

Note: The default policy of exporting all 'direct' routes is no longer in effect if export pol-
icy is given.

 export proto ripng tag 2112 {

 proto static {

 all;
150 9/26/02

Configuring GateD, V.9.3.2
 };

 proto direct {

 all;

 };

 };

32.4.4 Exporting to OSPF ASE and NSSA

Example 1

This example configures all static routes to be exported into OSPF ASE (Type-5 LSAs).

 export proto ospfase {

 proto static {

 all;

 };

 };

Example 2

A similar configuration can be used to export all static routes into OSPF NSSA (Type-7
LSAs).

 export proto ospfnssa {

 proto static {

 all;

 };

 };

32.4.5 Exporting to ISIS
This example configures all IPv4 and IPv6 static routes to be exported into ISIS external
reachability. The routes shall be originated in Level 2 LSPs only.

 export proto isis level 2 {

 proto static {

 all;

 };

 };

32.4.6 Exporting RIP Routes
This example configures certain RIP routes to be exported into OSPF ASE using a metric of
1 in the ASE LSAs. The 192.168.10/24 route shall be exported using a metric of 2.

 export proto ospfase metric 1 {

 proto rip {

 192.168.10/24 metric 2;
9/26/02 151

Route Exportation, GateD V.9.3.2
 192.168.11/24 restrict;

 192.168.12/24;

 };

 };

32.4.7 Exporting OSPF Routes
This example configures all OSPF routes to be exported into RIP.

Note: The OSPF routes that will match are OSPF internal routes, not ASE-based routes.

 export proto rip {

 proto ospf {

 all;

 };

 };

32.4.8 Exporting Routes from Non-routing Protocols
The 'aggregate' protocol is not a routing protocol but a classification of routes configured
by the user. The following example exports all aggregate routes (see the aggregate clause)
into OSPF ASE.

 export proto ospfase {

 proto aggregate {

 all;

 };

 };

32.4.9 Exporting by AS Path
This example uses a simple AS Path regular expression to export routes with an AS Path of
204, 203 into RIP, placing the tag 2112 in the RIP tag field.

 export proto rip tag 2112 {

 proto bgp aspath “(204 203)” origin any {

 all;

 };

 };

32.4.10 Exporting by Route Tag
Where supported by the routing protocol, export policy may use route tags. The following
example exports all RIP routes with tag 2112 into OSPF ASE.

 export proto ospfase {

 proto rip tag 2112 {

 all;

 };
152 9/26/02

Configuring GateD, V.9.3.2
 };
9/26/02 153

Route Exportation, GateD V.9.3.2
154 9/26/02

Chapter 33
Route Aggregation and Generation
33.1 Route Aggregation Overview

Route aggregation is a method of generating a more general summary route, given the pres-
ence of a more specific route. It is used, for example, at an autonomous system border to
generate a route to a network to be advertised via BGP, given the presence of one or more
subnets of that network learned via RIP. No aggregation is performed unless explicitly
requested in an aggregate statement.

Route aggregation is also used by regional and national networks to reduce the amount of
routing information passed. With careful allocation of network addresses to clients, regional
networks can announce one route to regional networks instead of hundreds.

Aggregate routes are not actually used for packet forwarding by the originator of the aggre-
gate route, only by the receiver (if it wishes). A router is supposed to respond with an ICMP
network unreachable message if the router receives a packet that does not match one of
the component routes that led to the generation of an aggregate route. This message is to
prevent packets for unknown component routes from following a default route into another
network, where they would be forwarded back to the border router, and around and around
again and again, until their TTL expired. Sending an unreachable message for a missing
piece of an aggregate is only possible on systems with support for reject routes.

A slight variation of aggregation is the generation of a route based on the existence of cer-
tain conditions. This is sometimes known as the “route of last resort.” This route inherits
the next hops and AS path from the contributor specified with the lowest (most favorable)
preference. The most common usage for this is to generate a default based on the presence
of a route from a peer on a neighboring backbone.

33.1.1 Aggregate and Generate Inheritance
The following parameters can be specified at multiple places within a given aggregate or
generate statement:

• restrict
• preference

In the case of restrict, placing it on an aggregate/generate source statement restricts
inclusion of all routes from the specified protocol in the aggregate. Including it on a
route_filter excludes all routes that match that route filter.

In the case of aggregation preference, the most specific instance of a preference value is
assigned to a route. Thus, any preference value specified on an aggregate/generate
statement is used only if neither the aggregate/generate source statement nor the
route_filter that matches a route specifies a value. The value of the most specific
9/26/02 155

Route Aggregation and Generation, GateD V.9.3.2
matching route_filter is used. If neither the aggregate/generate statement, the
matching aggregate/generate source statement, nor the matching route_filter speci-
fies a preference value, then the default aggregate preference value of 130 is used.

33.2 Aggregation and Generation Syntax
aggregate ([inet6] default |
 network (mask mask | masklen masklen | / masklen))

 [preference preference_value]

 [bgp]

 [brief]

 [[toribs] ([unicast | multicast | unicast multicast)]

 {

 aggregate_list

 };

generate ([inet6] default |
 network (mask mask | masklen masklen | / masklen))

 [preference preference_value]

 [[toribs] (unicast | multicast | unicast multicast)]

 [noinstall]

 {

 aggregate_list

 };

aggregate_list:

Aggregate lists are composed of one or more of the following:

 proto bgp

 [(as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))]

 [comm { communities_list }]

 [ext-comm { extended_communities_list }]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto bgp

 [(as ASN) | (aspath aspath-regular-expression

 origin (any | igp | egp | incomplete))]

 restrict ;

 proto rip

 [tag tagvalue]
156 9/26/02

Configuring GateD, V.9.3.2
 restrict ;

 proto rip

 [tag tagvalue]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ripng

 [tag tagvalue]

 restrict ;

 proto ripng

 [tag tagvalue]

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ospf [tag tagvalue] restrict ;

 proto ospf [tag tagvalue] [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto ospfase [tag tagvalue] restrict ;

 proto ospfase [tag tagvalue] [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto direct restrict ;

 proto direct

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto static restrict ;

 proto static

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto kernel restrict ;

 proto kernel

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto isis restrict ;
9/26/02 157

Route Aggregation and Generation, GateD V.9.3.2
 proto isis

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto aggregate restrict ;

 proto aggregate

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

 proto all restrict ;

 proto all

 [preference preference]

 { [route_filter [preference preference | restrict] ;] } ;

More detailed descriptions of these commands can be found on page 667 of the Command
Reference Guide.

Routes that match the route filters are called “contributing” routes. They are ordered on
the list of contributing routes for a given aggregate route according to the aggregation
preference value that applies to them, with the lowest (best) preference values coming
first. The aggregation preference value can be specified on the aggregate or generate
statement, any aggregate source statement, or any route_filters. In addition to being
used to order contributing routes, the aggregation preference value associated with the
first contributor on this ordered list is used as the route preference value for the aggregate
route itself.

When ordering contributing routes on the contributor list, if two contributors have the
same aggregation preference value, then the contributor with the lowest route preference
is ordered before the other contributors with the same aggregation preference value.

In the case of generate, in addition to using the aggregation preference value of the first
contributor in the list as the aggregate route’s preference, the nexthops used for the
aggregate are taken to be those of the first contributor in the list.

The aspath for an aggregate is formed by combining the aspath of each contributor. If BGP
rules are configured for aggregation, the contributor order can impact the MED and
nexthop values in the combined aspath generated for the aggregate. This is due to the fact
that the values of MED and nexthop from the first valid BGP contributor route encountered
while traversing the contributor list in order are used in the combined aspath.

A route can contribute only to an aggregate route that is more general (less specific) than
itself; it must match the aggregate under its mask. Any given route can contribute only to
one aggregate route, which will be the most specific configured, but an aggregate route
may contribute to a more general aggregate.

Note that a route is only considered as a potential contributor to aggregate routes for
which it is a more specific route. Therefore, a filter of all only pertains to more specific
routes of the aggregate. Currently, specifying a network type filter for a network that is
158 9/26/02

Configuring GateD, V.9.3.2
not a more specific instance of the aggregate to which it pertains is not treated as an error
even though it will never match any contributors.

33.3 Exporting Generated vs. Aggregated Routes
If you create an aggregate and export it, the result achieved is that which is expected: for
the general aggregate, a loopback (reject) route is installed in the kernel, and the route is
advertised with the aggregating router as the next hop.

Consider the following topology

 --------- --------- ---------

 | RTR A | | RTR B | | RTR C |

 ----+---- ----+---- ----+----

 | | |

 --------+-----------------+---------------+------

wherein routers A and B are OSPF peers and routers B and C are BGP peers. Let router A
advertise a static route to 223.50. Let router B have the following configuration

aggregate 223 masklen 8 {

 proto ospfase {

 223 masklen 8 refines;

 };

}

export bgp peeras 123 {

 proto aggregate {

 all;

 };

};

Router B will install in its kernel

223.50 gw RTR A

223/8 gw 127.0.0.1 reject

and will advertise to Router C a route to 223/8 gw Router B. On the other hand, if the
same configuration is used but with generate instead of aggregate, so we have

generate 223 masklen 8 {

 proto ospfase {

 223 masklen 8 refines ;

 };

};
9/26/02 159

Route Aggregation and Generation, GateD V.9.3.2
then two things happen. Router B, instead of installing a reject route for portions of the
aggregate that do not have specific matches, will instead install the following routes in the
kernel:

223/8 gw RTR A

223.50 gw RTR A

The second difference is that the aggregate route advertised to router C will be 223/8 gw
router A.

You can also configure an aggregate 10/7 on behalf of another client AS (for example, AS
65003):

aggregate 10.0.0.0 masklen 7 {

 proto bgp as 65003{

 10.0.0.0 masklen 8;

 11.0.0.0 masklen 8;

 };

};

33.4 Aggregating into Unicast and Multicast RIBs
RIBs need not be specified for aggregate routes. By default, an aggregate applies to all
RIBs to which any contributing route applies. For example, an aggregate applies to the Uni-
cast RIB if and only if any contributing route applies to the Unicast RIB.

Examples

aggregate 10.0.0.0 masklen 8 {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

};

If any static route in the Unicast RIB matches the route filter, the aggregate will exist in
the Unicast RIB. Likewise, for the Multicast RIB.

RIB limits can, however, be specified. By default, the limit is all RIBs (i.e., all RIBs to which
any contributing route applies). This default can be overridden with a more specific limit,
as in the example below:

aggregate 10.0.0.0 masklen 8 unicast {

 proto static {

 10.0.0.0 masklen 8 refines;

 };

};
160 9/26/02

Configuring GateD, V.9.3.2
The above aggregate applies only to the Unicast RIB (and only if a contributing route is in
the Unicast RIB). Contributing routes in other RIBs are ignored.
9/26/02 161

Route Aggregation and Generation, GateD V.9.3.2
162 9/26/02

Chapter 34
Route Flap Damping
34.1 Route Flap Damping Overview

GateD can be configured to suppress propagation of unstable BGP routes. This feature is
commonly referred to as “route flap damping”. For each route to a destination from each
peer, GateD maintains an instability metric. Whenever the peer deletes or changes its route
to the destination, GateD increments the associated instability metric. The metric decays
exponentially with time, with a configurable half-life time; the decay rates can be config-
ured differently when the destination is reachable or unreachable.

When a route’s instability metric crosses a specified upper threshold, GateD suppresses the
route. GateD will reuse the route only when the instability metric goes below another con-
figurable lower threshold. GateD suppresses usage of routes that have a stability history
that crosses a given configurable threshold.

34.2 Route Flap Damping Syntax
The syntax for the dampen-flap clause is as follows:

 dampen-flap {

 [suppress-above flap-metric ;]

 [reuse-below flap-metric ;]

 [max-flap flap-metric ;]

 [reach-decay time ;]

 [unreach-decay time ;]

 [keep-history time ;]

 };

The dampen-flap statement follows the bgp statement and precedes the policy statements
in the run-time configuration file. If the dampen-flap statement is absent, GateD will not
maintain a route instability history. If a dampen-flap statement is present, but without any
parameters, the default value of the parameters is used. If a reconfiguration changes the
values of any parameter, GateD erases all previous route instability history.

More detailed descriptions of these commands can be found on page 701 of the Command
Reference Guide.
9/26/02 163

Route Flap Damping, GateD V.9.3.2
164 9/26/02

Chapter 35
SNMP Multiplexing (SMUX)
35.1 SMUX Overview

When the smux clause is used, GateD will attempt to contact an SNMP master-agent on the
local host via the SMUX (SNMP Multiplexing) protocol over TCP. The SMUX protocol is
described in RFC 1227.

Version 9.2 of GateD supports SMUX as the only way to interact with the MIB modules. Only
SNMP version 1 is supported, and all MIB variables are read-only. Prior versions of GateD
included an embedded standalone SNMP agent; this was removed in the 9.0 code base.

Upon contacting the master agent, a string password and SNMP Object Identifier identity
are passed for authentication purposes. If the authentication succeeds, GateD will register
the routing MIB subtrees and request that it be contacted when the master agent receives
queries for these subtrees. When the master agent receives such a query from a manage-
ment station, it will be passed to GateD.

The GET and GETNEXT operations are both supported.

35.2 SMUX Syntax
 smux (on | off)

 [{

 traceoptions smuxtraceoptions ;

 port smuxport ;

 password string ;

 }] ;

More detailed descriptions of these commands can be found on page 709 of the Command
Reference Guide.

35.3 SNMP Query Examples
GateD uses a hard-coded identity of .1.3.6.1.4.1.4.3.1.4. After GateD has been started and
has connected to a master agent, it will respond to queries that fall within its supported
MIBs. For example, using the ucd-snmp snmpget utility, the following command would
retrieve the variable bgp.bgpLocalAs, if both GateD and the master agent were running on
the local machine, using version-1 SNMP.

 snmpget -v 1 localhost public 15.2.0
9/26/02 165

SNMP Multiplexing (SMUX), GateD V.9.3.2
This sends an SNMP GET to the local master agent, which in turn queries GateD for the
value. For SNMP tables, the snmpwalk utility can be used to walk an entire table, using
GET-NEXTs. Here is an example command to walk the entire BGP Peer Table for the peer
address 192.168.10.1:

 snmpwalk -v 1 localhost public 15.3.1.1.192.168.10.1

35.4 SMUX Sample Configurations

35.4.1 Simple Configuration
GateD is known to interoperate with the ucd-snmp “snmpd” agent. The following is a sim-
ple configuration that allows snmpd to pass SNMP queries to gated via SMUX.

 smux on {

 traceoptions "/tmp/smuxlog" all ;

 password "gated";

 };

35.4.2 Simple Configuration with Port
The master agent may be listening for SMUX connections on a different port than the regis-
tered port of 199. It is possible to configure GateD to attempt the connection on a user-
specified port.

 smux on {

 traceoptions "/tmp/smuxlog" all;

 port 2112 ;

 };
166 9/26/02

Chapter 36
Frequently Asked Questions
36.1 Kernel Interactions

1. Does GateD support dynamic configuration on the fly? Does GateD support com-
mand line coding?

GateD uses a flat file, rather than a command line interface. To re-read the file after con-
figuration changes, GateD must receive a SIGHUP. This can be accomplished either directly
through the UNIX signaling mechanism or by use of the GDC (GateD Controller). However,
this configuration is "dynamic," in that states are retained between reconfigs whenever pos-
sible. For example, BGP connections are not terminated.

2. Does GateD use the UNIX mbuf structure or its own buffer?

GateD does not use UNIX mbuf structures. GateD uses its own buffers, dynamically allocated
from process address space.

3. Does GateD require pre-emptive (such as UNIX, Windows, or Linux) or non-pre-
emptive operating systems (such as PSOS and any real-time embedded systems)?

A complete listing of currently supported operating systems is available. GateD runs in a sin-
gle process with co-operative multitasking inside the processes. We do not require preemp-
tive or non-preemptive operating systems as long as the process receives adequate cycles.

4. Does GateD require a UNIX-style "fork" function?

The “dump” feature in GateD uses fork(2) to spawn a child process. The child dumps inter-
nal state to a file and exits. If this feature is not necessary, it may be removed without
affecting operation.

5. Does GateD require timer functions from the operating system (for example, 1/10
or 1/100 sec time granularity, recursive timer, sleep, signal, and so on)?
9/26/02 167

Frequently Asked Questions, GateD V.9.3.2
In releases that support signal I/O and interval timer, the SIGALARM and SIGIO signals may
be sent by the operating system to allow GateD to respond to certain critical events, for
example, expiration of an OSPF HELLO timer. With normal timers, a timer granularity of 1/
10 second is sufficient for operation.

36.2 Protocols

36.2.1 OSPF

1. In a network with the following topology:

 R1 (gated-ospf)

 I1 | | (2 ppp links between R1 and R2)
 I2 | |

 R2 (gated-ospf)
 / \
 / \
 N1 N2 (subnetworks)

there are two point-to-point links, I1 and I2, between routers R1 and R2. R2 is
connected to networks N1 and N2. Both routers are running gated-ospf. How can
I route the traffic from R1 to R2 on I1 only if it is destined to N1, and on I2 only if
it is destined to N2?

Put I2 and N2 in one area and I1 and N1 in another area. OSPF prefers intra-area routes
over inter-area. An example configuration would be:

 For R1:

 ospf yes {

 priority 1;

 backbone {

 interface I1;

 };

 area 0.0.0.1 {

 interface I2;

 };

 };

 For R2:

 ospf yes {
168 9/26/02

Configuring GateD, V.9.3.2
 priority 1;

 backbone {

 interface I1;

 interface N1;

 };

 area 0.0.0.1 {

 interface I2;

 interface N2;

 };

 };

2. The following message appears when GateD is restarted. “gated[28100]:
task_get_proto: getprotobyname("ospf") failed, using proto 89” What does this
message mean?

The /etc/protocol file doesn't contain an ospf entry. The entry should look something
like this:

ospf 89 OSPFIGP # Open Shortest Path First IGP

The 89 is the assigned Internet protocol number specified in RFC 1700. GateD will use the
default value and continue if possible.

3. OSPF does not seem to install multiple equal-cost routes to a destination. I know
OSPF supports ECMP (Equal-Cost Multipath Routing). What’s wrong?

The OSPF module supports ECMP by installing more than one next hop in the RIB. Kernel
support for this feature, however, is not widely available. In order for all of the equal-cost
routes to a destination to be installed, the krt_rt_xxx module (and kernel) must support
this.

36.2.2 BGP

1. How can I increase the number of BGP peers GateD will allow?

Specify a value for RTBIT_SIZE in your config file and recompile GateD. Each increment of
RTBIT_SIZE provides 32 additional bits for 32 additional peers.

Example: options RTBIT_SIZE=4 will allow up to 128 peers. The default value of
RTBIT_SIZE is 1.

2. Why is GateD changing the NEXT_HOP attribute when advertising a route to an
internal peer?
9/26/02 169

Frequently Asked Questions, GateD V.9.3.2
The BGP RFC states: “When a BGP speaker advertises the route to another BGP speaker
located in its own autonomous system, the advertising speaker shall not modify the
NEXT_HOP attribute associated with the route.” See “Chapter 14 Border Gateway Protocol
(BGP)” on page 61 for more information about the BGP statement.

Basically, GateD is designed not to modify the NEXT_HOP if it believes that its IBGP peer
will be able to figure out how to reach the address it depicts. GateD will go ahead and
rewrite the NEXT_HOP if it believes that the peer will not know how to reach the depicted
address.

In the case of group type internal, GateD knows (because you have so configured it) that
its peers do not do BGP-IGP next hop resolution. GateD also knows that all of its peers are
L2-adjacent, so it rewrites the NEXT_HOP to something it knows its peer will be able to
reach at L2.

If you wish to make GateD conform to the RFC instead of allowing this behavior, you can
use group type routing with interface all specified. In the case of group type routing
... interface all, GateD knows that (a) its peers are resolving BGP-IGP (this is a prop-
erty of group type routing) and (b) NEXT_HOPs via any interface are known via the IGP (this
is what "interface all" means). So it won't rewrite any NEXT_HOPs.

3. I keep seeing error messages about an unsupported optional parameter when try-
ing to peer with a Cisco®. What is the problem?

Some versions of Cisco® IOS have a capabilities negotiation bug. The intended behavior of
capabilities negotiation is to resend a BGP open message without the optional parameter
once it receives a notification from GateD stating that the parameter is unsupported. You
should upgrade your Cisco® or apply this workaround: neighbor x.x.x.x dont-capabil-
ity-negotiate. For more information about capabilities negotiation, refer to draft-
ietf-idr-bgp4-cap-neg-03.txt.

4. How can I configure a peer that is not on the same network?

Use the gateway keyword on the peer statement:

 group type external peeras 65000 {

 peer a.b.c.d gateway w.x.y.z;

 };

where a.b.c.d is your peer's IP address and w.x.y.z is the next hop that GateD should use
to find a.b.c.d.

5. Why isn't BGP advertising my static routes?

If no export policy is specified, BGP will advertise only direct (interface) routes. To export
static routes, you will need an export statement like this:

 export proto bgp as 65500 {

 proto static {
170 9/26/02

Configuring GateD, V.9.3.2
 all;

 };

 };

Note that once export policy has been defined for BGP, GateD needs to be explicitly config-
ured in order to export direct (interface) routes. Use proto direct to do this. See “Export-
ing to BGP” on page 149 for more information on configuring BGP export policy.

6. Why is GateD ignoring my MEDs?

If you want GateD to pay attention to incoming metrics, you need to specify the med key-
word on the group statement:

 group type external peeras 65530 med {

 peer 192.168.10.2;

 };

The default behavior is for GateD to ignore incoming metrics.

7. What is BGP's default import and export behavior?

GateD will import all routes from a configured peer unless otherwise configured. If no
export policy is specified, BGP will advertise only direct (interface) routes. See “Examples
of Importation into Multicast RIBs” on page 142 and “Exporting to BGP” on page 149 for
more information on configuring BGP policy.

8. If, on a Cisco® router, a route is redistributed (exported) from another protocol,
such as static or OSPF, into BGP, what should the origin of the route be?

If you redistribute using the "network x.x.x.x" command, your Cisco® router will automati-
cally set the origin to "IGP." If you use "redistribute," your Cisco® router will use origin
incomplete. Either will work. A description of the origin path attribute follows.

ORIGIN (Type Code 1):

ORIGIN is a well-known mandatory attribute that defines the origin of the path informa-
tion. The data octet can assume the following values:

Value Meaning

0 IGP - Network Layer Reachability Information is
interior to the originating AS.

1 EGP - Network Layer Reachability Information is
learned via EGP.
9/26/02 171

Frequently Asked Questions, GateD V.9.3.2
2 INCOMPLETE - Network Layer Reachability Infor-
mation is learned by some other means.

Value Meaning
172 9/26/02

Chapter 37
Glossary of Terms

Terms used in descriptions throughout this document are defined below.
adjacency

Adjacency is a relationship formed between selected neighboring routers for the purpose of
exchanging routing information. Not every pair of neighboring routers becomes adjacent.

autonomous system
An autonomous system is a set of routers under a single technical administration, using an
interior gateway protocol and common metrics to route packets within the autonomous sys-
tem, and using an exterior gateway protocol to route packets to other autonomous systems.
Since this classic definition was developed, it has become common for a single autonomous
system to use several interior gateway protocols and sometimes several sets of metrics
within an autonomous system. The use of the term “autonomous system” stresses that even
when multiple IGPs and metrics are used, the administration of an autonomous system
appears to other autonomous systems to have a single coherent interior routing plan and to
present a consistent picture of what networks are reachable through it. The autonomous
system is represented by a number between 1 and 64511, assigned by the Regional Internet
Registries (RIR) which has been delegated this responsibility by the Internet Assigned Num-
bers Authority (IANA).

BGP - Border Gateway Protocol
The Border Gateway Protocol (BGP) is an exterior (inter-domain) routing protocol used for
exchanging routing information between autonomous systems. BGP routes contain "path
attributes", which provide various information about reachable network destinations.
These attributes contain loop-prevention information, information about route origin, and
other properties that may be administratively set on the routes to aid in BGP route selec-
tion.
BGP is described in more detail in the BGP Protocol section. See “Chapter 14 Border Gate-
way Protocol (BGP)” on page 61.

designated router
A designated router in OSPF is a router that generates a link-state advertisement for the
multiaccess network and assists in running the protocol. Each multiaccess network that has
at least two attached routers has a designated router.

destination
A destination is any network or any host.

DVMRP - Distance Vector Multicast Routing Protocol
DVMRP is the original IP multicast routing protocol. DVMRP was designed to run over multi-
cast capable LANs (like Ethernet) as well as through non-multicast capable routers. In the
9/26/02 173

Glossary of Terms, GateD V.9.3.2
case of non-multicast capable routers, the IP multicast packets are “tunneled” through the
routers as unicast packets.

EGP - Exterior Gateway Protocol
EGP can mean one of two things. First, it can refer generically to the class of routing pro-
tocols for inter-domain routing - an exterior gateway protocol.
Second, it can refer specifically to the EGP, the historic predecessor to BGP.

forwarding table
The forwarding table is the table in the kernel that controls the forwarding of packets. The
forwarding table is also known in OSI terms as a “forwarding information base,” or FIB. The
forwarding table contains tuples that are used to determine how packets are forwarded.
These tuples consist of the following fields:

• network (or CIDR prefix)
• next hop(s)
• the interface that the packet goes out

The table that GateD uses internally to store routing information that it learns from rout-
ing protocols is a “routing table,” known in OSI terms as a “routing information base,” or
“RIB.”

gateway
A gateway is an intermediate destination by which packets are delivered to their ultimate
destination. A gateway is a host address. Gateways are specified in the format of their
address family, which in IP is the dotted-quad format, for example, 192.0.2.1. In IP, it may
also be specified as an 8-digit hexadecimal string preceded by 0x, for example,
0xc0000201.
If "options noresolve" is not specified, a gateway can be a symbolic hostname, for exam-
ple, gw.example.com. The numeric forms are much preferred over the symbolic form.

gateway_list

A gateway_list is a list of one or more gateways separated by white space.
IGMP - Internet Group Management Protocol

IGMP was primarily designed for hosts on multi-access networks to inform locally-attached
routers of their group membership information. Hosts inform routers by multicasting IGMP
Host Membership Reports. Once multicast routers listen for these reports, they can
exchange group membership information with other multicast routers. This reporting sys-
tem allows distribution trees to be formed to deliver multicast datagrams.

IGP - Interior Gateway Protocol
IGP is one of a class of routing protocols used to exchange routing information within an
autonomous system. (A detailed explanation of interior gateway protocols is available in
“Chapter 24 Internet Group Management Protocol (IGMP)” on page 119.)

inter-domain routing
Inter-domain routing protocols are used to exchange routing information between autono-
mous systems. (See also “EGP - Exterior Gateway Protocol” on page 174.)

interface
The interface is the host address of an attached interface. This is the address of a broad-
cast, NBMA or loopback interface, and the remote address of a point-to-point interface. As
with any host address, it may be specified symbolically.
174 9/26/02

Configuring GateD, V.9.3.2
interface
The interface is the connection between a router and one of its attached networks. A phys-
ical interface may be specified by a single IP address, domain name, or interface name
(unless the network is an unnumbered point-to-point network). Multiple levels of reference
in the configuration language allow identification of interfaces using wildcard, interface
type name, or delete word address. Be careful with the use of interface names, because
there may be more than one address per interface. Dynamic interfaces can be added or
deleted, and indicated as up or down, as well as changed to address, netmask and metric
parameters.

interface_list

An interface_list is a list of one or more interface names, including wildcard names
(names without a number) and names that may specify more than one interface or
address, or the token “all” for all interfaces. See “Chapter 7 Interface Statement” on
page 23 for more information.

intra-domain routing
Intra-domain routing protocols are used to exchange reachability information within an
autonomous system (AS). (See also “IGP - Interior Gateway Protocol” on page 174.)

IS-IS - Intermediate System to Intermediate System
Intermediate System to Intermediate System (IS-IS) is one of a class of interior gateway
protocols (See also “IGP - Interior Gateway Protocol” on page 174.) IS-IS is a link-state
interior gateway protocol originally developed for routing ISO/CLNP (International Organi-
zation for Standardization/Connectionless Network Protocol) packets. IS-IS is described in
more detail in “Chapter 13 Intermediate System to Intermediate System (IS-IS)” on
page 55. The version distributed in GateD routes IP.

local_address

The local_address is the host address of an attached interface. This is the address of a
broadcast, NBMA, or loopback interface, and the local address of a point-to-point inter-
face. As with any host address, it may be specified symbolically.

mask
A mask is a means of subdividing networks using address modification. A mask is a dotted
quad specifying which bits of the destination are significant. (Except when used in a route
filter (see “route filter” on page 177), GateD supports only contiguous masks.)

mask length
The mask length is the number of contiguous one bits at the beginning of the mask.

metric
A metric is one of the units used to help a system determine the best route. Metrics may
be based on hop count, routing delay, or an arbitrary value set by the administrator,
depending on the type of routing protocol. Routing metrics may influence the value of
assigned internal preferences. (See “Assigning Preferences” on page 11.)

Protocol Metric Represents Range Unreachable

RIP Distance (hop-count) 0-15 16

OSPF Cost of path 1-16777216 Delete

IS-IS Cost of path 0-254 Delete
9/26/02 175

Glossary of Terms, GateD V.9.3.2
This sample table shows the range of possible values for each routing protocol metric and
the value used by each protocol to reach a destination.

multi-access networks
Multi-access networks are those physical networks that support the attachment of multiple
(more than two) routers. Each pair of routers on such a network is assumed to be able to
communicate directly.

multicast
Multicast routing protocols allow packets to be routed to a select set of destinations.

natural mask
A natural mask is a mask of an IP address that is determined by looking at the first two bits
of the address. Classful addressing uses only natural masks.
0x - 255.0.0.0 - class A
10 - 255.255.0.0 - class B
11 - 255.255.255.0 - class C
See also RFC 950.

natural network
A natural network is any network that has the same actual and natural masks.

neighbor
A neighbor for one router is another router with which implicit or explicit communication
is established by a routing protocol. Neighbors are usually on a shared network, but not
always. This term is used mostly in OSPF. The term “neighbor” is usually synonymous with
“peer”. (See “peer” on page 176.)

 neighboring routers
Neighboring routers are two routers that have interfaces to a common network. On multi-
access networks, routers are dynamically discovered by OSPF’s hello protocol.

network
Network refers to any packet-switched network. A network may be specified by its IP
address or network name. The host bits in a network specification must be zero. Default
may be used to specify the default network (0.0.0.0).

network
Network is either a fully qualified IP host address or an IP prefix. An IP host address should
be specified in dotted-quad format, for example, 192.2.0.1. An IP prefix should be speci-
fied using only as many numbers as necessary. Both may also be specified as a hexadeci-
mal string preceded by "0x" with an even number of hexadecimal digits of length between
two and eight, for example, 0xc0020001. Also allowed is the symbolic value, "default",
which has the value of 0.0.0.0. If "options noresolve" is not specified, a symbolic net-
work name is used, for example, test.example.net. The numeric forms are much preferred
over the symbolic form.

OSPF - Open Shortest Path First
OSPF is one of a class of interior gateway protocols. Open Shortest Path First (OSPF) is a
link-state protocol. OSPF is described in more detail in “Chapter 12 Open Shortest Path
First (OSPF)” on page 45.

peer
A peer for a router is another router with which implicit or explicit communication is
established by a routing protocol. Peers are usually on a shared network, but not always.
176 9/26/02

Configuring GateD, V.9.3.2
This term is used mostly by BGP. Peer is usually synonymous with neighbor. See also “neigh-
bor” on page 176.

port
A port is a UDP or TCP port number. Valid values are from 1 through 65535, inclusive.

preference
preference is a value between 0 (zero) and 255 and is used to select between many routes
to the same destination. The route with the best (numerically lowest) preference is the
active route. The active route is the one installed in the kernel forwarding table and
exported to other protocols. Preference zero is usually reserved for routes to directly
attached interfaces. A default preference is assigned to each source from which GateD
receives routes. (See “Assigning Preferences” on page 11.)

prefix
A prefix is a contiguous mask covering the most significant bits of an address. The prefix
length specifies how many bits are covered.

QoS - Quality Of Service
QoS is the level of service provided in terms of delay, throughput, reliability, and cost. QoS
is the OSI equivalent of TOS. See also “TOS - Type Of Service” on page 178.

RIP - Routing Information Protocol
RIP is one of a class of interior gateway protocols. RIP assumes that the best route is the
one that uses the fewest gateways, i.e., the shortest path, not taking into account conges-
tion or delay on route. (See “Chapter 11 Routing Information Protocol (RIP)” on page 39 for
more information about RIP.)

reject route
A reject route is a route with the characteristic that all packets sent along it are dis-
carded. For each such discarded packet, an ICMP network unreachable message is sent to
the packet originator.

route filter
A route filter is a description of the characteristics of a set of network addresses. Route fil-
ters are used to group routes that require the same policy.

router id
A router id is a 32-bit number assigned to each router running the BGP or OSPF protocol.
This number uniquely identifies the router within the autonomous system.

router_id
A router_id is an IP address used as a unique identifier assigned to represent a specific
router. It is usually the address of an attached interface.

RIB - Routing Information Base
The RIB is the repository of all of GateD’s retained routing information, used to make deci-
sions and as a source for routing information that is propagated.

simplex
A simplex interface is an interface on a broadcast medium that is not capable of receiving
packets that it broadcasts. An interface may be marked as simplex either by the kernel or
by interface configuration. GateD takes advantage of interfaces that are capable of
receiving their own broadcast packets to monitor whether an interface appears to be func-
tioning properly.
9/26/02 177

Glossary of Terms, GateD V.9.3.2
time to live (ttl)

The time to live of an IP packet is how many hops it can make. Valid values are from 1
through 255 inclusive.

TOS - Type Of Service
The TOS is for Internet service quality selection. The type of service is specified along the
abstract parameters of precedence, delay, throughput, reliability, and cost. These abstract
parameters are to be mapped into the actual service parameters of the particular net-
works the datagram traverses. The vast majority of IP traffic today uses the default type of
service. (See also “QoS - Quality Of Service” on page 177.)

unicast
Unicast routing protocols allow packets to be routed to one destination (rather than to sev-
eral or all possible destinations).
178 9/26/02

Chapter 38
References
38.1 Requests for Comments (RFCs) by Number
The following is an index of selected RFCs that are of interest to the GateD community, listed in
chronological order.

RFC 792 -- http://ietf.org/rfc/rfc792.txt
J. Postel, Internet Control Message Protocol: DARPA Internet Program Protocol Specification
(September 1981)

RFC 827 -- http://ietf.org/rfc/rfc827.txt
E. Rosen, Exterior Gateway Protocol (EGP) (October 1982)

RFC 891 -- http://ietf.org/rfc/rfc891.txt
D. Mills, DCN Local-network Protocols (December 1983)

RFC 904 -- http://ietf.org/rfc/rfc904.txt
D. Mills, Exterior Gateway Protocol Formal Specification (April 1984)

RFC 1058 -- http://ietf.org/rfc/rfc1058.txt
C. Hedrick, Routing Information Protocol (June 1988)

RFC 1105 -- http://ietf.org/rfc/rfc1105.txt
K. Lougheed, Y. Rekhter, Border Gateway Protocol BGP (June 1989)

RFC 1112 -- http://ietf.org/rfc/rfc1112.txt
S. Deering, Host Extensions for IP Multicasting (August 1989) (Obsoletes RFC1054) (Obso-
letes RFC 988)

RFC 1163 -- http://ietf.org/rfc/rfc1163.txt
K. Lougheed, Y. Rekhter, A Border Gateway Protocol (BGP) (June 1990)

RFC 1164 -- http://ietf.org/rfc/rfc1164.txt
J. Honig, D. Katz, M. Mathis, Y. Rekhter, J. Yu, Application of the Border Gateway Protocol
in the Internet (June 1990)

RFC 1195 -- http://ietf.org/rfc/rfc1195.txt
R. Callon, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments (December 1990)

RFC 1227 -- http://ietf.org/rfc/rfc1227.txt
M. Rose, SNMP MUX Protocol and MIB (May 1991)

RFC 1245 -- http://ietf.org/rfc/rfc1245.txt
J. Moy, OSPF Protocol Analysis (July 1991)

RFC 1246 -- http://ietf.org/rfc/rfc1246.txt
9/26/02 179

References, GateD V.9.3.2
J. Moy, Experience with the OSPF Protocol (July 1991)
RFC 1247 -- http://ietf.org/rfc/rfc1247.txt

J. Moy, OSPF Version 2, (July 1991) (Obsoletes RFC 1131)
RFC 1253 -- http://ietf.org/rfc/rfc1253.txt

F. Baker, R. Coltun, OSPF Version 2 Management Information Base (August 1991)
RFC 1256 -- http://ietf.org/rfc/rfc1256.txt

S. Deering, ICMP Router Discovery Messages (September 1991)
RFC 1265 -- http://ietf.org/rfc/rfc1265.txt

Y. Rekhter, BGP Protocol Analysis (October 1991)
RFC 1266 -- http://ietf.org/rfc/rfc1266.txt

Y. Rekhter, Experience with the BGP Protocol (October 1991)
RFC 1267 -- http://ietf.org/rfc/rfc1267.txt

K. Lougheed, Y. Rekhter, A Border Gateway Protocol 3 (BGP-3) (October 1991)
RFC 1268 -- http://ietf.org/rfc/rfc1268.txt

P. Gross, Y. Rekhter, Application of the Border Gateway Protocol in the Internet (October
1991)

RFC 1269 -- http://ietf.org/rfc/rfc1269.txt
J. Burruss, S. Willis, Definitions of Managed Objects for the Border Gateway Protocol (Ver-
sion 3) (October 1991)

RFC 1321 -- http://ietf.org/rfc/rfc1321.txt
R. Rivest, The MD5 Message-Digest Algorithm (April 1992)

RFC 1370 -- http://ietf.org/rfc/rfc1370.txt
Internet Architecture Board, Applicability Statement for OSPF (October 1992)

RFC 1388 -- http://ietf.org/rfc/rfc1388.txt
G. Malkin, RIP Version 2 Carrying Additional Information (January 1993)

RFC 1389 -- http://ietf.org/rfc/rfc1389.txt
G. Malkin, F. Baker, RIP Version 2 MIB Extension (January 1993)

RFC 1397 -- http://ietf.org/rfc/rfc1397.txt
D. Haskin, Default Route Advertisement In BGP2 And BGP3 Versions Of The Border Gate-
way Protocol (January 1993)

RFC 1403 -- http://ietf.org/rfc/rfc1403.txt
K. Varadhan, BGP OSPF Interaction (January 1993)

RFC 1448 -- http://ietf.org/rfc/rfc1448.txt
J. Case, K. McCloghrie, M. Rose, S. Waldbusser, Protocol Operations for Version 2 of Simple
Network Management Protocol (SNMPv2) (April 1993)

RFC 1519 -- http://ietf.org/rfc/rfc1519.txt
V. Fuller, T. Li, K. Varadhan, Classless Inter-Domain Routing (CIDR): an Address Assignment
and Aggregation Strategy (September 1993) (Obsoletes RFC 1338)

RFC 1583 -- http://ietf.org/rfc/rfc1583.txt
J. Moy, OSPF Version 2 (March 1994)

RFC 1584 -- http://ietf.org/rfc/rfc1584.txt
J. Moy, Multicast Extensions to OSPF (March 1994)
180 9/26/02

Configuring GateD, V.9.3.2
RFC 1585 -- http://ietf.org/rfc/rfc1585.txt
J. Moy, MOSPF: Analysis and Experience (March 1994)

RFC 1586 -- http://ietf.org/rfc/rfc1586.txt
O. deSouza & M. Rodriques, Guidelines for Running OSPF Over Frame Relay
Networks (March 1994)

RFC 1587 -- http://ietf.org/rfc/rfc1587.txt
R. Coltun, V. Fuller, The OSPF NSSA Option (March 1994)

RFC 1656 -- http://ietf.org/rfc/rfc1656.txt
P. Traina, BGP-4 Protocol Document Roadmap and Implementation Experience (July 1994)

RFC 1657 -- http://ietf.org/rfc/rfc1657.txt
S. Willis, J. Burruss, Definitions of Managed Objects for the Border Gateway Protocol
(BGP-4) (July 1994)

RFC 1700 -- http://ietf.org/rfc/rfc1700.txt
J. Reynolds, J. Postel, Assigned Numbers (October 1994) (Obsoletes RFCs 1340, 1060, 1010,
990, 960,943, 923, 900, 870, 820, 790, 776, 770,762, 758,755,750, 739, 604, 503, 433, 349)

RFC 1723 -- http://ietf.org/rfc/rfc1723.txt
G. Malkin, RIP Version 2 Carrying Additional Information (November 1994)

RFC 1724 -- http://ietf.org/rfc/rfc1724.txt
G. Malkin, F. Baker, RIP Version 2 MIB Extension (November 1994) (Obsoletes RFC 1389)

RFC 1745 -- http://ietf.org/rfc/rfc1745.txt
K. Varadhan, S. Hares, Y. Rekhter, BGP4/IDRP for IP/OSPF Interaction (December 1994)

RFC 1765 -- http://ietf.org/rfc/rfc1765.txt
J. Moy, OSPF Database Overflow (March 1995)

RFC 1771 -- http://ietf.org/rfc/rfc1771.txt
Y. Rekhter, T. Li, A Border Gateway Protocol 4 (BGP-4) (March 1995)

RFC 1772 -- http://ietf.org/rfc/rfc1772.txt
Y. Rekhter, P. Gross, Application of a Border Gateway Protocol in the Internet (March 1995)

RFC 1773 -- http://ietf.org/rfc/rfc1773.txt
P. Traina, Experience with the BGP-4 Protocol (March 1995)

RFC 1774 -- http://ietf.org/rfc/rfc1774.txt
P. Traina, BGP-4 Protocol Analysis (March 1995)

RFC 1793 -- http://ietf.org/rfc/rfc1793.txt
J. Moy, Extending OSPF to Support Demand Circuits, (April 1995)

RFC 1850 -- http://ietf.org/rfc/rfc1850.txt
F. Baker, OSPF Version 2 Management Information Base (November 1995)

RFC 1863 -- http://ietf.org/rfc/rfc1863.txt
D. Haskin, BGP/IDRP Route Server Alternative to a Full Mesh Routing (October 1995)

RFC 1881 -- http://ietf.org/rfc/rfc1881.txt
IAB, IESG, IPv6 Address Allocation Management (December 1995)

RFC 1908 -- http://ietf.org/rfc/rfc1908.txt
9/26/02 181

References, GateD V.9.3.2
SNMPv2 Working Group, J. Case, K. McCloghrie, M. Rose & S. Waldbusser, Coexistence
between Version 1 and Version 2 of the Internet-standard Network Management Frame-
work (January 1996)

RFC 1923 -- http://ietf.org/rfc/rfc1923.txt
J. Halpern, S. Bradner, RIPv1 Applicability Statement for Historic Status (March 1996)

RFC 1930 -- http://ietf.org/rfc/rfc1930.txt
J. Hawkinson, Guidelines for Creation, Selection, and Registration of an Autonomous Sys-
tem (AS) (March 1996)

RFC 1933 -- http://ietf.org/rfc/rfc1933.txt
R. Gilligan & E. Nordmark, Transition Mechanisms for IPv6 Hosts and Routers (April 1996)

RFC 1949 -- http://ietf.org/rfc/rfc1949.txt
S. Jackowski, Native ATM Support for ST2+ (May 1996)

RFC 1965 -- http://ietf.org/rfc/rfc1965.txt
P. Traina, Autonomous System Confederations for BGP (June 1996)

RFC 1966 -- http://ietf.org/rfc/rfc1966.txt
T. Bates, R. Chandra, BGP Route Reflection: An Alternative to Full Mesh IBGP (June 1996)

RFC 1997 -- http://ietf.org/rfc/rfc1997.txt
R. Chandra, P. Traina, BGP Communities Attribute (August 1996)

RFC 1998 -- http://ietf.org/rfc/rfc1998.txt
E. Chen, T. Bates, An Application of the BGP Community Attribute in Multi-home Routing
(August 1996)

RFC 2003-- http://ietf.org/rfc/rfc2003.txt
C. Perkins, IP Encapsulation within IP (October 1996)

RFC 2024 -- http://ietf.org/rfc/rfc2024.txt
D. Chen, P. Gayek, S. Nix, Definitions of Managed Objects for Data Link Switching using
SMIv2 (October 1996)

RFC 2080 -- http://ietf.org/rfc/rfc2080.txt
G. Malkin, R. Minnear, RIPng for IPv6 (January 1997)

RFC 2081 -- http://ietf.org/rfc/rfc2081.txt
G. Malkin, RIPng Protocol Applicability Statement (January 1997)

RFC 2091 -- http://ietf.org/rfc/rfc2091.txt
G. Meyer, S. Sherry, Triggered Extensions to RIP to Support Demand Circuits (January 1997)

RFC2092 -- http://ietf.org/rfc/rfc2092.txt
S. Sherry, G. Meyer, Protocol Analysis for Triggered RIP (January 1997)

RFC 2096 -- http://ietf.org/rfc/rfc2096.txt
F. Baker, IP Forwarding Table MIB (January 1997)

RFC 2117 -- http://ietf.org/rfc/rfc2117.txt
D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P.
Sharma, L. Wei, Protocol Independent Multicast-Sparse Mode (PIM-SM):Protocol Specifica-
tion (June 1997)

RFC 2178 -- http://ietf.org/rfc/rfc2178.txt
J. Moy, OSPF Version 2 (July 1997) (Obsoletes RFC 1583)

RFC 2185 -- http://ietf.org/rfc/rfc2185.txt
182 9/26/02

Configuring GateD, V.9.3.2
R. Callon, D. Haskin, Routing Aspects Of IPv6 Transition (September 1997)
RFC 2189 -- http://ietf.org/rfc/rfc2189.txt

A. Ballardie, S. Reeve & N. Jain, Core Based Trees (CBT version 2) Multicast Routing -- Pro-
tocol Specification (September 1997)

RFC 2201 -- http://ietf.org/rfc/rfc2201.txt
A. Ballardie, Core Based Tree (CBT) Multicast Architecture (July 1996)

RFC 2236 -- http://ietf.org/rfc/rfc2236.txt
W. Fenner, Internet Group Management Protocol, Version 2 (November 1997)

RFC 2257 -- http://ietf.org/rfc/rfc2257.txt
M. Daniele, B. Wijnen, D. Francisco, Agent Extensibility (AgentX) Protocol Version 1 (Janu-
ary 1998)

RFC 2270 -- http://ietf.org/rfc/rfc2270.txt
J. Stewart, T. Bates, R. Chandra, E. Chen, Using a Dedicated AS for Sites Homed to a Single
Provider (January 1998)

RFC 2283 -- http://ietf.org/rfc/rfc2283.txt
T. Bates, R. Chandra, D. Katz, Y. Rekhter, Multiprotocol Extensions for BGP-4 (February
1998)

RFC 2328 -- http://ietf.org/rfc/rfc2328.txt
J. Moy, OSPF Version 2 (April 1998)

RFC 2329 -- http://ietf.org/rfc/rfc2329.txt
J. Moy, OSPF Standardization Report (April 1998)

RFC 2362 -- http://ietf.org/rfc/rfc2362.txt
D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P.
Sharma, L. Wei, Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specifica-
tion (June 1998)

RFC 2370 -- http://ietf.org/rfc/rfc2370.txt
R. Coltun, The OSPF Opaque LSA Option (July 1998)

RFC 2386 -- http://ietf.org/rfc/rfc2386.txt
E. Crawley, R. Nair, B. Rajagopalan, H. Sandick, A Framework for QoS-based Routing in the
Internet (August 1998)

RFC 2430 -- http://ietf.org/rfc/rfc2430.txt
T. Li, Y. Rekhter, A Provider Architecture for Differentiated Services and Traffic Engineer-
ing (PASTE) (October 1998)

RFC 2439 -- http://ietf.org/rfc/rfc2439.txt
C. Villamizar, R. Chandra, R. Govindan, BGP Route Flap Damping (November 1998)

RFC 2545 -- http://ietf.org/rfc/rfc2545.txt
P. Marques, F. Dupont, Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Rout-
ing (March 1999)

RFC 2546 -- http://ietf.org/rfc/rfc2546.txt
A. Durand, B. Buclin, Bone Routing Practice (March 1999)

RFC 2547 -- http://ietf.org/rfc/rfc2547.txt
E. Rosen, Y. Rekhter, BGP/MPLS VPNs (March 1999)

RFC 2570 -- http://ietf.org/rfc/rfc2570.txt
9/26/02 183

References, GateD V.9.3.2
J. Case, R. Mundy, D. Partain, B. Stewart, Introduction to Version 3 of the Internet-stan-
dard Network Management Framework (April 1999)

RFC 2571 -- http://ietf.org/rfc/rfc2571.txt
D. Harrington, R. Presuhn, B. Wijnen, An Architecture for Describing SNMP Management
Frameworks (April 1999)

RFC 2572 -- http://ietf.org/rfc/rfc2572.txt
J. Case, D. Harrington, R. Presuhn, B. Wijnen, Message Processing and Dispatching for the
Simple Network Management Protocol (SNMP) (April 1999)

RFC 2573 -- http://ietf.org/rfc/rfc2573.txt
D. Levi, P. Meyer, B. Stewart, SNMP Applications (April 1999)

RFC 2574 -- http://ietf.org/rfc/rfc2574.txt
U. Blumenthal, B. Wijnen, User-based Security Model (USM) for Version 3 of the Simple
Network Management Protocol (SNMPv3) (April 1999)

RFC 2575 -- http://ietf.org/rfc/rfc2575.txt
B. Wijnen, R. Presuhn, K. McCloghrie, View-based Access Control Model (VACM) for the
Simple Network Management Protocol (SNMP) (April 1999)

RFC 2588 -- http://ietf.org/rfc/rfc2588.txt
R. Finlayson, IP Multicast and Firewalls (May 1999)

RFC 2622-- http://ietf.org/rfc/rfc2622.txt
C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg, M.
Terpstra, Routing Policy Specification Language (RPSL) (June 1999)

RFC 2650 -- http://ietf.org/rfc/rfc2650.txt
D. Meyer, J. Schmitz, C. Orange, M. Prior, C. Alaettinoglu, Using RPSL in Practice (August
1999)

RFC 2676 -- http://ietf.org/rfc/rfc2676.txt
G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, T. Przygienda, QoS Routing
Mechanisms and OSPF Extensions (August 1999)

RFC 2702 -- http://ietf.org/rfc/rfc2702.txt
D. Awduche, J. Malcolm, J. Agogbua M. O'Dell J. McManus, Requirements for Traffic Engi-
neering Over MPLS (September 1999)

RFC 2710 -- http://ietf.org/rfc/rfc2710.txt
S. Deering, W. Fenner, B. Haberman, Multicast Listener Discovery (MLD) for IPv6 (October
1999)

RFC 2715 -- http://ietf.org/rfc/rfc2715.txt
D. Thaler, Interoperability Rules for Multicast Routing Protocols (October 1999)

RFC 2725 -- http://ietf.org/rfc/rfc2725.txt
C. Villamizar, C. Alaettinoglu, D. Meyer, S. Murphy, Routing Policy System Security (Decem-
ber 1999)

RFC 2740 -- http://ietf.org/rfc/rfc2740.txt
R. Coltun, D. Ferguson, J. Moy, OSPF for IPv6 (December 1999)

RFC 2741 -- http://ietf.org/rfc/rfc2741.txt
M. Daniele, B. Wijnen, M. Ellison, D. Francisco, Agent Extensibility (AgentX) Protocol Ver-
sion 1 (January 2000)

 RFC 2742 -- http://ietf.org/rfc/rfc2742.txt
184 9/26/02

Configuring GateD, V.9.3.2
L. Heintz, S. Gudur, M. Ellison, Definitions of Managed Objects for Extensible SNMP Agents
(January 2000)

RFC 2763 -- http://ietf.org/rfc/rfc2763.txt
N. Shen, H. Smit., Dynamic Hostname Exchange Mechanism for IS-Iietf.orgS (February
2000)

RFC 2796 -- http://ietf.org/rfc/rfc2796.txt
T. Bates, R. Chandra, E. Chen, BGP Route Reflection - An Alternative to Full Mesh IBGP
(April 2000)

RFC 2842 -- http://ietf.org/rfc/rfc2842.txt
R. Chandra, J. Scudder, Capabilities Advertisement with BGP-4 (May 2000)

RFC 2858 -- http://ietf.org/rfc/rfc2858.txt
T. Bates, Y. Rekhter, R. Chandra, D. Katz, Multiprotocol Extensions for BGP-4 (June 2000)
(Obsoletes RFC 2283)

RFC 2933 -- http://ietf.org/rfc/rfc2933.txt
K. McCloghrie, D. Farinacci, D. Thaler, Internet Group Management Protocol MIB (October
2000)

RFC 2934 -- http://ietf.org/rfc/rfc2934.txt
K. McCloghrie, D. Farinacci, D. Thaler, B. Fenner, Protocol Independent Multicast MIB for
IPv4 (October 2000)

RFC 2966 -- http://ietf.org/rfc/rfc2966.txt
T. Li, T. Przygienda, H. Smit, Domain-wide Prefix Distribution with Two-Level IS-IS (Octo-
ber 2000)

RFC 2973 -- http://ietf.org/rfc/rfc2973.txt
R. Balay, D. Katz, J. Parker, IS-IS Mesh Groups (October 2000)

RFC 3065 -- http://ietf.org/rfc/rfc3065.txt
P. Traina, D. McPherson, J. Scudder, Autonomous System Confederations for BGP (February
2001) (Obsoletes RFC 1965)
9/26/02 185

References, GateD V.9.3.2
186 9/26/02

	Configuring GateD V.9.3.2
	Contents
	Chapter 1 About this Manual
	1.1 Overview
	1.2 Audience
	1.3 Configuring GateD Sections
	1.3.1 Overview
	1.3.2 Syntax
	1.3.3 Sample Configurations
	1.3.4 Protocol-specific Issues

	Chapter 2 Overview and Statement Summary
	2.1 What is GateD?
	2.2 How to Configure GateD
	2.3 Statement Grouping
	2.4 Address and Prefix Formats
	2.5 Route Preference and Route Selection
	2.6 Statement Summary

	Chapter 3 Preferences and Route Selection
	3.1 Preferences Overview
	3.2 Assigning Preferences
	3.3 Sample Preference Configurations

	Chapter 4 Trace Statements
	4.1 Trace Overview
	4.2 Trace Syntax
	4.3 Global, Protocol, and Packet Tracing
	4.3.1 Global Significance Only
	4.3.2 Protocol Significance
	4.3.3 Packet Tracing

	Chapter 5 Directive Statements
	Chapter 6 Options Statements
	6.1 Options Overview
	6.2 Options Syntax

	Chapter 7 Interface Statement
	7.1 Overview
	7.2 Interface Syntax
	7.3 Default Configuration
	7.4 Sample Interface Configurations
	7.5 IP Interface Addresses and Routes
	7.6 Interface Aliases
	7.6.1 Aliases Overview
	7.6.2 Using aliases-nh primary (default)
	7.6.3 Using aliases-nh lowestip

	Chapter 8 Definition Statements
	8.1 Definition Overview
	8.2 Autonomous System Syntax
	8.3 Confed ID Syntax
	8.4 Router ID Syntax
	8.5 Martian Syntax
	8.5.1 IPv4 Defaults
	8.5.2 IPv6 Defaults

	8.6 Martian Examples

	Chapter 9 Multiple Routing Information Bases (RIBs)
	9.1 Multiple RIBs Overview
	9.2 Direct (Interface) Routes
	9.3 Static Routes
	9.4 Aggregate Routes
	9.5 Importing Routes
	9.6 gii

	Chapter 10 Configuration Initialization and Re-initialization
	10.1 Overview
	10.2 Phase 1 - Initialization of Process
	10.2.1 Reading the Kernel Routing Table
	10.2.2 Reading the Kernel Interface List

	10.3 Phase 2 - Initialization of Tasks
	10.4 Phase 3 - Re-initialization of Tasks

	Chapter 11 Routing Information Protocol (RIP)
	11.1 Overview
	11.2 RIP Syntax
	11.3 RIP Sample Configurations
	11.3.1 RIP version 1 with Broadcast
	11.3.2 RIP version 2 with Broadcast and Simple Authentication
	11.3.3 RIP version 2 with Multicast and Simple Authentication
	11.3.4 RIP version 2 with Broadcast and MD5 Authentication
	11.3.5 RIP version 2 with Source and Trusted Gateways

	Chapter 12 Open Shortest Path First (OSPF)
	12.1 OSPF Overview
	12.2 OSPF Syntax
	12.3 OSPF Sample Configurations
	12.4 Authentication

	Chapter 13 Intermediate System to Intermediate System (IS-IS)
	13.1 Overview
	13.2 IS-IS Syntax
	13.3 IS-IS Defaults
	13.4 IS-IS Sample Configurations

	Chapter 14 Border Gateway Protocol (BGP)
	14.1 BGP Overview
	14.2 BGP Syntax
	14.3 Extended BGP-4 Features
	14.4 Route Selection
	14.5 Cisco® Interoperability
	14.5.1 Cisco® vs. GateD Route Selection

	14.6 Local_Pref Configuration Example
	14.6.1 MED Configuration Example
	14.6.2 Import Filter Example
	14.6.3 Export Filter Example

	14.7 BGP Issues
	14.7.1 Third-Party Route Advertisement
	14.7.2 Determining Next Hops
	14.7.3 AS Path Stuffing and Spoofing
	14.7.4 Route Reflection Overview and Examples
	14.7.5 Weighted Route Damping Overview, Syntax, and Defaults
	14.7.6 Setpref/Local_Pref Overview
	14.7.7 Communities Overview and Examples
	14.7.8 Multi-Exit Discriminator Overview and Examples
	14.7.9 Confederations

	Chapter 15 Router Discovery
	15.1 Router Discovery Overview
	15.1.1 The Router Discovery Server
	15.1.2 The Router Discovery Client

	15.2 Router Discovery Syntax
	15.3 Router Discovery Defaults
	15.4 Router Discovery Examples
	15.4.1 Example 1
	15.4.2 Example 2

	Chapter 16 Internet Control Message Protocol (ICMP)
	16.1 ICMP Overview
	16.2 ICMP Syntax
	16.3 ICMP Sample Configuration

	Chapter 17 Redirect Processing
	17.1 Redirect Overview
	17.2 Why GateD Monitors Redirects
	17.3 Redirect Processing
	17.4 Configuration
	17.5 Redirect Syntax
	17.6 Configuration Defaults
	17.7 Redirect Sample Configurations

	Chapter 18 Kernel Interface
	18.1 Kernel Interface Overview
	18.2 Kernel Interface Syntax
	18.3 Forwarding Tables and Routing Tables
	18.3.1 Updating the Forwarding Table
	18.3.2 Reading the Forwarding Table

	18.4 Reading the Interface List
	18.4.1 Reading the Interface List with SIOCGIFCONF
	18.4.2 Reading the Interface List with sysctl

	18.5 Reading Interface Physical Addresses
	18.6 Reading Kernel Variables
	18.7 Special Route Flags

	Chapter 19 Static Routes
	19.1 Static Overview
	19.2 Static Syntax

	Chapter 20 Distance Vector Multicast Routing Protocol (DVMRP)
	20.1 DVMRP Overview
	20.2 DVMRP Syntax
	20.3 Sample DVMRP Configurations
	20.3.1 Example 1
	20.3.2 Example 2

	20.4 DVRMP Defaults

	Chapter 21 Protocol Independent Multicast (PIM)
	21.1 Overview
	21.2 PIM Syntax
	21.3 Defaults
	21.4 PIM Tracing Options
	21.5 Examples

	Chapter 22 Multi-Protocol - Border Gateway Protocol (MPBGP)
	22.1 MPBGP Overview
	22.2 MPBGP Syntax
	22.3 MPBGP Configurable Options
	22.3.1 Route Reflection
	22.3.2 Weighted Route Damping
	22.3.3 Setpref/Local_Pref
	22.3.4 Communities and Extended Communities
	22.3.5 Multi-Exit Discriminator
	22.3.6 Confederations

	Chapter 23 Multicast Source Discovery Protocol (MSDP)
	23.1 MSDP Overview
	23.2 MSDP Syntax
	23.3 Sample MSDP Configurations
	23.3.1 MSDP and PIM-SM
	23.3.2 MSDP Only

	23.4 Defaults

	Chapter 24 Internet Group Management Protocol (IGMP)
	24.1 IGMP Overview
	24.2 IGMP Syntax
	24.3 Sample IGMP Configurations
	24.3.1 Example 1: IGMP and DVMRP
	24.3.2 Example 2: IGMP and DVMRP
	24.3.3 Example 3: IGMP Only
	24.3.4 Example 4: IGMP Only
	24.3.5 Example 5: IGMP Only
	24.3.6 Example 6: IGMP Only
	24.3.7 Example 7: Per Interface Configuration

	24.4 Defaults

	Chapter 25 Multicast Statement
	25.1 Multicast Statement Overview
	25.2 Multicast Statement Syntax
	25.3 Multicast Sample Configurations
	25.4 Multicast Statement Defaults

	Chapter 26 Mstatic Statement
	26.1 Mstatic Statement Overview
	26.2 Mstatic Statement Syntax
	26.3 Mstatic Sample Configurations
	26.4 Mstatic Statement Defaults

	Chapter 27 Routing Information Protocol, next generation (RIPng)
	27.1 RIPng Overview
	27.2 RIPng Syntax
	27.3 RIPng Defaults
	27.4 RIPng Sample Configurations
	27.4.1 RIPng on All Interfaces
	27.4.2 RIPng on Two Interfaces

	Chapter 28 Route Filtering
	28.1 Route Filtering Overview
	28.2 Route Filtering Syntax
	28.3 Route Filtering Defaults
	28.4 Route Filtering Examples

	Chapter 29 Matching AS Paths
	29.1 AS Path Overview
	29.2 Matching AS Path Syntax
	29.3 AS Path Regular Expressions

	Chapter 30 BGP Communities
	30.1 BGP Communities Overview
	30.2 BGP Communities and Extended Communities Configurations
	30.3 Syntax
	30.3.1 BGP Communities Syntax
	30.3.2 BGP Extended Communities Syntax

	Chapter 31 Route Importation
	31.1 Route Importation Overview
	31.1.1 Route Filters
	31.1.2 Importing Routes into Different RIBS
	31.1.3 Import Inheritance

	31.2 Route Importation Syntax
	31.3 Route Importation Defaults
	31.4 Route Importation Examples
	31.4.1 Examples of Importation into Multicast RIBs

	Chapter 32 Route Exportation
	32.1 Route Exportation Overview
	32.1.1 Export Inheritance

	32.2 Export Syntax
	32.3 Export Defaults
	32.4 Export Examples
	32.4.1 Exporting to BGP
	32.4.2 Exporting to RIP
	32.4.3 Exporting to RIPng
	32.4.4 Exporting to OSPF ASE and NSSA
	32.4.5 Exporting to ISIS
	32.4.6 Exporting RIP Routes
	32.4.7 Exporting OSPF Routes
	32.4.8 Exporting Routes from Non-routing Protocols
	32.4.9 Exporting by AS Path
	32.4.10 Exporting by Route Tag

	Chapter 33 Route Aggregation and Generation
	33.1 Route Aggregation Overview
	33.1.1 Aggregate and Generate Inheritance

	33.2 Aggregation and Generation Syntax
	33.3 Exporting Generated vs. Aggregated Routes
	33.4 Aggregating into Unicast and Multicast RIBs

	Chapter 34 Route Flap Damping
	34.1 Route Flap Damping Overview
	34.2 Route Flap Damping Syntax

	Chapter 35 SNMP Multiplexing (SMUX)
	35.1 SMUX Overview
	35.2 SMUX Syntax
	35.3 SNMP Query Examples
	35.4 SMUX Sample Configurations
	35.4.1 Simple Configuration
	35.4.2 Simple Configuration with Port

	Chapter 36 Frequently Asked Questions
	36.1 Kernel Interactions
	36.2 Protocols
	36.2.1 OSPF
	36.2.2 BGP

	Chapter 37 Glossary of Terms
	Chapter 38 References
	38.1 Requests for Comments (RFCs) by Number

